REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-04-

Public reporting burden for this collection of information is estimated to average 1 hour per response, M §ing he time fc

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burc

including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operatior: 0 5
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 2050% H'

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 3. REPORT TYPE 3. DATES COVERED (From - T0)
08-31-2004 Final 06-01-2001 to 05-31-2004
2. TITLE AND SUBTITLE Sa, CONTRACT NUMBERS
REAL-TIME MARBLES: Sb, GRANT NUMBER
A Scheme for Adaptive Distributed F49620-01-1-0341
Resource Allocation 5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
Dr. Martin Frank
Dr. Pedro Szekely Se. TASK NUMBER
57, WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. :régz%?nﬂ”ﬁ BOEF;GANIZATION
USC INFORMATION SCIENCES INSTITUTE

4676 ADMIRALTY WAY

MARINA DEL REY, CA 90292-6695

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITOR'S ACRONYM(S)
USAF, Air Force Research Laboratory AFOSR

Air Force Office of Scientific Research

801 N. Randolph St. 11. SPONSORING/MONITORING
Arlington, VA 22203-1977 NN AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT
Distribution Statement A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
None

14. ABSTRACT

Purpose. The MARBLES project was established to study algorithms for coordinating swarms of Unmanned Combat Aerial Vehicles
(UCAUVs). Critical problems included (2) the scalability of the algorithms to very large swarm sizes, and (b) the robustness of the algorithms
against the sudden total failure of participating UCAVs.

Scope. The effort focused on evaluating the algorithms in a simulated environment for the UCAVs; some of the scheduling technology was
also applied to flight scheduling for AV8-B Harrier aircraft of Marine Air Group 13 in Yuma, AZ.

Methods. MARBLES used a two-pronged approach to address the critical problems above — (1) a novel peer-to-peer data storage approach
among the UCAV:s that scales to large swarm sizes and that is guaranteed not to lose data when any single UCAV dies, and (2) market-
inspired negotiation techniques that do not exhibit a single point of failure.

Major Findings, Including Results, Conclusions, and Recommendations. MARBLES resulted in the development of a novel peer-to-
peer data repository that scales logarithmically in the number of participants (UCAVs), tolerates the failure of any single UCAV without
data loss, and efficiently resolves multi-attribute range queries (“locate UCAVs within this latitude and longitude with this type of
munition”) — and thus provided the backbone infrastructure for truly large swarms.

15. SUBJECT TERMS
scalable peer-to-peer data repositories, market-inspired negotiation, multi-agent
systems, UCAV swarms, flight scheduling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE OF ABSTRACT OF PAGES Martin Frank

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 60 19b. TELEPHONE NUMBER (include area code)
310-448-9182

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

20061028 082

Final Technical Report:

REAL-TIME MARBLES:
A Scheme for Adaptive Distributed
Resource Allocation

Grant Number: ¥49620-01-1-0341
Period of Performance: 06-01-2001 to 05-31-2004
Martin Frank and Pedro Szekely, Principal Investigators
Information Sciences Institute, University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292
E-mail: frank@isi.edu
WWW Homepage: http://www.isi.edu/marbles

Voice: 310-448-9182
FAX: 310-822-6592

Abstract

Purpose.

The MARBLES project was established to study algorithms for coordinating swarms of
Unmanned Combat Aerial Vehicles (UCAVs). Critical problems included (a) the scalability of
the algorithms to very large swarm sizes, and (b) the robustness of the algorithms against the
sudden total failure of participating UCAVs.

Scope.

The effort focused on evaluating the algorithms in a simulated environment for the UCAVs;
some of the scheduling technology was also applied to flight scheduling for AV8-B Harrier
aircraft of Marine Air Group 13 in Yuma, AZ.

Methods.

MARBLES used a two-pronged approach to address the critical problems above — (1) a novel
peer-to-peer data storage approach among the UCAVs that scales to large swarm sizes and that is
guaranteed not to lose data when any single UCAV dies, and (2) market-inspired negotiation
techniques that do not exhibit a single point of failure.

Major Findings, Including Results, Conclusions, and Recommendations.

MARBLES resulted in the development of a novel peer-to-peer data repository that scales
logarithmically in the number of participants (UCAVs), tolerates the failure of any single UCAV
without data loss, and efficiently resolves multi-attribute range queries (“locate UCAVs within
this latitude and longitude with this type of munition”) — and thus provided a candidate backbone
infrastructure for truly large swarms.

Table of Contents

ADSITACE ...ttt ettt ettt ettt ettt e e b ea et et ettt ettt es e bt e s e ne e s nenesaeena i
TaADIE Of COMLENESvectieieriieite ittt ettt et e st et sen et sabesaeetenesnesseesnaonsannans 11
LASE OF FAGUIES ..ottt ettt sttt et ettt an e b s b e e e s e nesseeneonesanas il
1 EXECULIVE SUMIMATY ..c.eoomiriiiiriiiiiiieeiieie ettt s sas e ne st sas s b ssseaaee 1
2 MARBLES: Market-Inspired Negotiation for UCAV Coordinationc.ccccecevvervrcnrernacne. 1
2.1 External Marbles Scheme Properties...........c.ccvveviiiiniininiiiiiniiiiicinccceceeees 1
2.2 Internal Marbles Scheme Properties.........c.coccovivuevinineniiniinineninincceneniececcseens 2
2.3 Formal Problem Statement............c.ooviiiiiriiiiiiieiceceteeee e 3
24 Running EXAmMPIe........cccoooiiiiiiiiiiiiiitcectet ettt s 3
2.5 A Rough Taxonomy of SOIVETS.......ccoueoiiiiiiiiiiietcce e 4
2.6 Evaluation of the MARBLES Algorithmscccoceevrieininincniiiieeccecceiccciee 15
2.7 Work Related to MARBLESc..cciiiiiiiiiitciecsecieessnee s 16
2.8 MARBLES CONCIUSION......ccitiiitiiiiiiiieecieee ettt sae st seaeste e sseeaaeesbesae 17

3 Robust UCAV Peer-to-Peer Knowledge Storage...........ceceeenvereeeneninenivicnicecieicceecenns 18
3.1 INEOAUCHON ...ceeniecictet ettt s s s 18
3.2 RDFPeers ArChItECIUTIEcocueiiiiiiiiieeeieei ettt ettt et ee e e 20
3.3 MAAN OVEIVIEW ..ottt ettt sttt st st n e st ae st b et sane s esne e 21
34 Storing RDF TTIPIES ...ccouiiieiiiiiiiieeicecteee ettt ettt sttt e ane s 24
35 Native Queries in RDFPEEIScccooiiiiiiiiiiieeeeee ettt cetee e e srae e e e e e eneas 27
3.5.1 Atomic TrIPle QUETIES.....cueeuiiiiiiieeiceieeteit ettt ettt e e e e saene 27
352 Disjunctive and Range QUETIEScccoveriiiriiniinrinciinieniniicreeecreeesie e 28

3.6 Conjunctive Multi-Predicate QUETIEScovueeieriieienieiecieiceeeriesee et 29
3.7 Resolving RDQL QUETIEScoceeruiriiiiiiiiriiinieeieniieie et sreeeceieense e iesenesae e ssr e 30
3.8 RDF Subscription and NOtfiCaAtioNc.coceevirerierereiiiniieiceeeieeeeereieeee e 31
3.8.1 Subscribing to AtomiIC QUETIESccceciriemireriierirerenrinieeeeeerecee s 31
382 Subscribing to Disjunctive and Range QUeries..........occcevveevervvenieiniinienieenneeens 32
383 Subscribing to Conjunctive Multi-Predicate QUETri€s..........ceeevvvercerienecscenenneenns 33
3.84 Unsupported Subscription TYPEScoveoeveniiierriiirtcreesecienene et 33
3.8.5 Extension To Support Highly Skewed Subscription Patternsc..ccccceveevennees 34

3.9 Implementation and EValuation...........coccoouiiieiiirieniernieiieeceietcerese et 34
3.10 Routing Hops to Resolve Native QUETIES..........ccoceeieieiriiiiieieicreieecreneneesneneaen 35
3.11 Throughput of Triple Storing and QUETIYINEGc.cccceruriririerrrienrerieneeneerrerrereererenaes 37
3.11.1 Message Traffic of Subscription and Notificationccecevercrecenernenennenens 38

3.12 Dealing with Overly Popular URIs and Literalsc.cccccccceevioeninniencnineniccennene. 40
3.13 Load Balancing via Successor Probingco.ceievevieiiniininieniiiecenece e 43
3,14 Related WOTK....cocoiiiiiiiiei ettt 44
3.14.1 RDF Metadata Management SYSIEIMSccc.eeverrierierieeeiieeiienreesreeseeeseeseessaeaes 44
3.14.2 Structured Peer-to-Peer SyStemsccoceeeiriiriniiininieniineeccecetceeeeeereeens 45
3.14.3 Publish/Subscribe SYStEmMS.......ccceeiviimiriiininininiicreccrte ettt 46

3.15 Conclusion, Robust P2P Knowledge Storagecovecvereerienienrerirnnenrenesieneeeennes 47

4 Transitions to Military APPHCAIONScccueereiriiriirerieieerieniee st ceeesieeree et seeeeesaneee e 47
4.1.1 Manual Harrier Flight Scheduling Today...........coccooeevininninininincciecccneneenne 48
4.1.2 The Challenge in Automating the Flight Schedulec..ccoceeveviiiiniiiiniiiinnn. 48
413 Highlights of the Automated Flight Scheduling Systemcccoocceevvirienennnen. 49

5 ACKNOWICAZEIMENLSceiiiieieiiitieiee ettt ettt et st sttt e eaee 53
6 RETEIENCES ...ttt ettt ettt 54

i

List of Figures

Figure 1: The running example problem...........cccooiiiiiiiiiiiiiin e 3
Figure 2: First stage of marbles2 solution to the problem...........cccoveiiiiiininneiie, 4
Figure 3: Second stage of marbles2 solution to the problem ... 5
Figure 4: Third stage of marbles2 solution to the problemccccoeciniiivinniiniiiice 5
Figure 5: Final stage of marbles2 solution to the problem..........c.cccoceiiviiiniininiiinniiice, 5
Figure 6: Bid values sequences for the Msmarbles scheme ..o 8
Figure 7: First stage of marblesize solution to the problemccccocoiiiininininiiiie. 9
Figure 8: Second stage of marblesize solution to the problem.............ccocoeivininriiiinnne 9
Figure 9: Final stage of marblesize solution to the problemcoooviiniin 10
Figure 10: Trade-off between message traffic and solution quality in msmarbles....................... 10
Figure 11: First stage of grabmarbles solution to the problem............ccoeviiiiininiiinniien 11
Figure 12: Second stage of grabmarbles solution to the problemcccoovvivieiivnciininninnan 11
Figure 13: Final stage of grabmarbles solution to the problem...........cccccooviiinniiiniinnean 12
Figure 14: Quantitative Comparison of MARBLES Algorithmsccccoooeinininiiiiiniieins 15
Figure 15: Easy-hard-easy phase-transition behavior of the total number of messages and
computational time for the Marblesize scheme. (a) 100 tasks, (b) 100 resources................ 16
Figure 16: The Architecture of RDFPEETSc..cccoocviiiiviininiiniiiiiiiiiiiicctee e 20
Figure 17: An 4-bit Chord network consisting of 8 nodes and 4 Keysccccoceviviiviniiiiicinnnns 22

Figure 18: Storing three triples into an RDFPeers network of eight nodes in an example 4-bit
identifier space that could hold up to 16 nodes. (In reality a much larger identifier space is

USEd, SUCH @S 128 DILS.) . cccuviiiiiiieiieerieectie et e estteestee e e ae e erreseeeesaeeeneae s saeesssaeesreesanaasaseseensees 26
Figure 19: The eight possible atomic triple queries for exact matches. The cost is measured in the
number of routing hops needed to resolve each query ..o, 28
Figure 20: number of routing hops to resolve atomic triple patterns Q2 through QS8 35
Figure 21: The number of routing hops to resolve disjunctive exact-match queries in a network
With 1000 NOAES ..nveeieeitie ettt ettt s ea e ne e 36
Figure 22: The number of routing hops to resolve disjunctive range queries (0.1% selectivity) in
a network with 1000 NOAES.........cocueirerireneiietr et 36
Figure 23: Aggregated throughput of triple storing increases with the number of concurrent
clients in @ 12-n0de NEtWOTKcccoovviviiiieiiiiiiiiiiiicicnicnri e 37
Figure 24: Aggregated query throughput increases with the number of concurrent clients in a 12-
node network with 10,000 and 100,000 preloaded respectivelyccvveevecvininiicieninnncns 38

Figure 25: For a constant number of triple subscriptions and insertions, the cost of our
subscription scheme in messages grows no more than logarithmically with network size,

128 topics, 1024 subscriptions and 16384 triples............ccoiiniiiiiiniiinnecees 39
Figure 26: For a constant network size and load, registration and notification traffic grows

linearly with the subscription rate, 128 topics, 64 nodes, and 8192 triples..........c.cccoeueeene. 40
Figure 27: The frequency count distribution of URIs and literals in the ODP Kids and Teens

CALALOE ettt ettt s s e sa e b e r e en s e 41

Figure 28: URISs and literals that occur more than one thousand times in kt-structure.rdf.u8.gz. 42
Figure 29: The number of triples per node as a function of the threshold of popular triples (100

physical nodes with 6 virtual nodes per physical node)cccovveviinininniiicneenne. 43
Figure 30: The number of triples per node as a function of the number of successor nodes probed

(100 physical nodes, Popular_Threshold=1000).........c..ccccoceuriininiiininiiininiieeenn 44
Figure 31: Fine-tuning scheduling preferences in the Metrics sCreen.........coceecveccevceiniicinciccnnnnn. 49
Figure 32: The interactive time-line display for fine-tuning mission segments................cccceueuee. 50
Figure 33: The resulting overall schedule (system choices are in green).........c.ccccecveveeniecncnnnnnnn. 51
Figure 34: Understanding scheduling possibilities via the feasibility displaycccceceiniis 53

iii

1 Executive Summary

The MARBLES project investigated scalable Unmanned Combat Air Vehicle (UCAV)
coordination algorithms (the name of the project is not an acronym; a project member
likening our particular market-inspired approach to “kids trading marbles”). These
coordination algorithms address both the assignment of tasks to UCAVs without a central
“leader” UCAYV (Section 2) and the robust shared storage of the common knowledge
(Section 3). The MARBLES project also contributed to an operational flight scheduling
product for Marine Corps Harrier squadrons (Section 4). The project also resulted in two
journal publications [Cai et al. 2004c, Cai and Frank 2004d], three conference
publications [Cai et al. 2002, Cai et al. 2004a, Cai and Frank 2004b], five workshop
publications [Frank et al. 2001, Cai et al. 2003a, Cai et al. 2003b, Decker and Frank
2004, Frank 2004], and one technical report [Cai and Frank 2003c].

2 MARBLES: Market-Inspired Negotiation for UCAV
Coordination

We investigated market-inspired negotiation algorithms that are distributed in nature and
that can be applied to Unmanned Combat Air Vehicles (UCAVs) as well as to other
domains where decentralized decision makers must act jointly. These decision makers
could act individually but are better off coordinating with their peers. A subset of this
problem is distributed real-time resource allocation — deciding under time pressure which
UCAVs will neutralize a newly discovered enemy threat, for example.

There is a spectrum of approaches for distributed resource allocation, ranging from no
communication at all (physics-based approach: agents observe each others’ behavior but
do not explicitly communicate, much like a wolf pack closing in on prey) to
communication of the full rationale of behavior (argumentation approach: agents back up
requests to others by an argument of why they should grant it).

In this continuum, our market-inspired Marbles schemes fall in-between. Compared to a
purely physics-based approach, they obviously use more messages yet also explore a
more complex set of alternatives. Compared to the argumentation approach, they
exchange messages of smaller complexity, yet the prices set by supply and demand can
possibly communicate rationale in an alternative, more compact fashion, and potentially
steer the group of agents to sensible behavior via “the invisible hand of the market”.

2.1 External Marbles Scheme Properties

“Marbles” schemes are a family of resource allocation algorithms that are characterized
by the following properties:

Distributed. Each task only knows about its local requirements, and communicates with
potential resources for those requirements exclusively through messages. Hence, each
task and each resource can — but does not have to — be located on a different machine.

Cooperative. Marbles schemes are not designed to tolerate malicious participants, which
distinguishes our research from work on e.g. electronic commerce and automated
auctions; we believe that security against external attack of cooperative negotiation
schemes is best located at a lower level (such as the message transport and encryption
level). The cooperative nature of the negotiation also means that tasks participating in
resource auctions can altruistically commit suicide by permanently withdrawing, and
therefore lowering resource prices that possibly help others succeed. The distributed
algorithms for concluding that tasks are unlikely to succeed further distinguishes our
work from work on competitive auctions.

Adaptive. A Marbles scheme can adapt a current partial solution to a new situation rather
than having to re-compute the new solution from scratch. This makes them applicable in
cases where “the world can’t stop while a solver computes a solution for everyone”, that
is, in cases where the time interval between situation changes is smaller than the total
running time of a non-adaptive centralized solver.

Real-Time. The individual negotiation participants should be explicitly aware of time and
adapt their behavior based on how much time is left.

Fault-Tolerant. A Marbles scheme should be robust against a set level of message loss, in
the sense of being able to make statements like “given an average message delay of 2
seconds and a message loss rate of 5%, this negotiation has a 99% likelihood of
concluding in less than 3 minutes”. Obviously, no message-based scheme can ever be
robust in the sense of making a 100% real-time response guarantee if there is a non-zero
chance of a message getting lost.

2.2 Internal Marbles Scheme Properties

We further characterize Marbles scheme by their “internal” properties; that term is
accurate in the sense of being more linked to our approach than the above “external”
ones.

Domain-based task valuation. Marbles schemes put a value on the execution of tasks that
is quantitative and that has meaning to domain practitioners. The value of resources is
exclusively derived from the value of the tasks they enable; they have no intrinsic domain
value of their own.

Lack of inflation. We do not allow inflation (the artificial introduction of currency not
backed up by domain value during negotiation) because the overall solution can
otherwise not be verified in domain terms. For example, imagine that a negotiation
scheme introduces inflation by increasing the value of tasks the longer they go unfilled
during negotiation: consequently, the basis of the proposed overall solution cannot be
analyzed by a domain expert without understanding the negotiation algorithm. Thus, the
problem with mixing intrinsic task value and negotiation-scheme-dependent artificial
“value” is that it would make the term “domain” currency meaningless.

Ever-fluctuating prices. In the prototypical open-outcry auction, participants bid until no
one wants to bid higher, and the highest bidder then owns the resource from that point in
time on. In contrast, Marbles schemes resources continually auction themselves -- the

auctions never “close”. That is, you can only be the current, not final, winner, of a
resource -- if the situation changes because, e.g., a new high-valued task appears you will
lose it.

2.3 Formal Problem Statement

Below we introduce the minimalist problem statement that our existing Marbles schemes
operate on.

Problem

There is a collection of available resources that are characterized by a unique name (and
nothing else). There is a collection of possible tasks that are worth a fixed domain value
if they are executed. They need to acquire one resource for each of their requirements to
be executed. Each resource can only be used for at most one task. Each task knows in
advance which resources are suitable for its requirements. (Thus, a prior “resource
discovery” phase is outside the scope of this project.)

This problem is very complex if tasks have multiple requirements (“complementaries”
exist, in economic jargon) - it would be trivial if each task had just a single requirement.

Solution

A solution consists of an assignment of resources to requirements such that every task has
either none or all of its requirements filled. The quality of a solution is measured by the
sum of the domain values of its satisfied tasks; a higher sum indicates a better solution.

2.4 Running Example

We will use the following example depicted in Figure 1 to explain how the various
Marble scheme variants operate. There are four resources called A, B, C, and D. There
are two tasks called Q and R of domain value 300 and 100, respectively. Each of the two
tasks has two requirements that can be filled by the resources indicated with a triangle.
This particular example was chosen because it is small yet leads to backtracking behavior
if schemes assign resources to requirements from left to right (as they usually do). The
optimal solution of domain value 400 is obvious (Q gets A and D, R gets B and C).

A B c D
Q 1 A A A
(300) 2 A
R 1 A A
(100) 2 A

Figure 1: The running example problem

2.5 A Rough Taxonomy of Solvers

We will present a number of “solvers” — any piece of code that produces a solution given
a problem in the above terms. Our research interest is exclusively in fully distributed
resource allocation schemes, but we have also built a number of centralized solvers for
comparison purposes. In addition, some of our Marbles variants have so far only
addressed part of the challenge in a distributed way.

All Marbles solvers fundamentally perform two tasks: assigning resources to the highest-
bidding tasks (“allocation”), and eliminating tasks from competition (“elimination’)
because they drive up the prices for others without seeming to have a chance of obtaining
all of their needed resources. Each of the variants below indicates if it solves each phase
in a distributed or centralized fashion.

Marbles2 [allocation: distributed, elimination: centralized]

The main inspiration behind this Marbles variant is that the cost of a resource should be
defined by the value that the second-highest bidder places on it (the “displacement” or
“opportunity” cost of the resource). Consequently, resources cost zero if no one else
wants them.

Message Protocol

Task to resource: bid(amount), withdrawal(); resource to task: loss(), win(amount that
can be lower than bid), priceChange(can be up or down but recipient is still winning).

The Running Example under Marbles?2
In this variant of our Marbles schemes, tasks attempt to fill each requirement one at a
time, bidding all of their available value to satisfy the next unfilled requirement.

1. Q simultaneously bids 300 on A, B, and D to satisfy its first requirement. R bids 100
on A and C.

A B C D
Q 1 A300 | A300 A300
(300) | 2 A
R 1 A100 A100
(100) | 2 A

Figure 2: First stage of marbles2 solution to the problem

2. Q obtains A for 100 (the cost as a displacement cost is determined by the second
highest bidder). It reacts by bidding 200 for B and D (because it has internally determined
that it is better off by using A for its second requirement, and has already spent 100 of its
300 value for obtaining a resource.

A B c D
Q 1 A100 | A200 A200
(300) | 2 A
R 9 A100 A100
(100) | 2 A

Figure 3: Second stage of marbles2 solution to the problem

3. R wins C for 0 (as there are no competing bidders). It reacts by bidding 100 on B to
obtain its second resource, and by completely withdrawing its bid for A (it already has a
resource for its first requirement for free; otherwise it would have bid on A whatever it
had to pay for C minus the minimum bid increment/decrement).

4. Q gets notified that the price of its A dropped to 0 (because all competition
disappeared). It thus now increases its bids for B and D to 300. Exclamation marks
indicate that the task is currently winning the resource.

A B c D
Q 1 A0 A300 A300
(300) [2 A
R 1 A100 A0l
(100) 2 A

Figure 4: Third stage of marbles2 solution to the problem

5. Q wins B for 100 (because that’s R’s bid). It is now satisfied, but bids 99 for D (a
cheaper resource is always preferable) just in case.

6. Q wins D for 0 because no one else wants it. It withdraws its bid for B because nothing
beats a free resource.

7. R gets notified that it is now the winner on B (also for 0). The scheme is in a terminal
state unless the environment changes (new high-value tasks could steal resources, for
example).

A B c D
Q 1 A A A0l
(300) | 2 A
R 1 A A0l
(100) | 2 AQ!

Figure 5: Final stage of marbles2 solution to the problem

Thus, in the end it has been determined that there is no competition for resources at all —-
all tasks can be satisfied with the available resources, using about 12 messages overall

and about 4 message round-trips.

Experience and Limitations of Marbles?2

As is evident from the curves in the Evaluation section below, this Marbles scheme (the
first one written) tends to produce the lowest-quality solutions and also require largest
number of messages. We believe that the latter is true because tasks bid on all qualified
resources for every requirement, and in addition the scheme bids down prices one by one
in epsilon increments (rather than in logarithmic sizes as some of the schemes below do).
We have not had the time to investigate why the former is true.

Msmarbles [allocation: distributed, elimination: distributed]

In the Msmarbles (Multi-Sized Marbles) scheme each task has the same number of
marbles. The size of each marble is the total value of the task divided by the number of
marbles that the task has. Consequently, tasks with higher value have larger marbles.

Message Protocol

Tasks bid on resources by placing marbles on them. A task can bid one marble at a time,
and must wait for a price-update message from the resource before placing another
marble. Resources grant themselves to the task that has placed the largest value (not
largest number) of marbles on them. When a task runs out of marbles, it can withdraw its
marbles from a resource. When it does so, the resource returns all marbles to all tasks that
have bid on it, with one exception. The resource keeps one marble from the current
winner. In essence, the price for the current winner goes down to one marble.

When a task withdraws its marbles from a resource, it will not attempt to bid on that
resource again unless it has available at least one more marble than it got back. We call
this number of marbles the task’s “block amount” on a given resource. Block amounts
always go up, and eventually will reach the point where a task cannot win an allocation
of resources for all its requirements because the block amounts on the required resources
exceeds the total number of marbles that a task has. When this happens, the task
voluntarily withdraws from competition by withdrawing all marbles from all resources.
The scheme converges because tasks keep withdrawing until all remaining tasks succeed.

The intuition behind Msmarbles is that if the valuation of resources emerges
incrementally, in small steps, it will be more accurate. This will enable tasks to make
more informed decisions about where to place or withdraw marbles and when to give up,
and thus lead to a better solution.

The timing of withdrawals is critical. It is advantageous to delay withdrawals as long as
possible because by that time other tasks may have withdrawn first and hence they
become subject to the eventually deadly block-amounts. In order to diminish the
advantages of delays, we made each task have the same number of marbles, each task bid
a single marble at a time, and each task wait for a reply before bidding the next marble.
Richer tasks will have an advantage, as they should, because they can delay placing
marbles. Poorer tasks may need several bids to catch up to the bid of a richer task, hence
allowing the richer task to hold on to its marbles for a longer time.

One of the main qualities of Msmarbles is that multiple medium-sized tasks can together
bid up the valuation of multiple resources forcing a richer task to become subject to
several block amounts, and eventually forcing it to give up. This enables the Msmarbles
scheme to make trade-offs between multiple medium-sided tasks and few richer tasks.

The Running Example under Msmarbles

Figure 6 shows the behavior of Msmarbles in the simple running example. In this
example we gave each task 8 marbles (twice the number of resources). Task Q’s marbles
are worth 37.5 points, whereas Task R’s marbles are worth 12.5 points. Lines labeled A,
B, C and D represent the valuation of resources A, B, C and D over time. Lines Q-A, Q-B
and Q-C represent the amount task Q has bid for resources A, B and C. R-A, R-C and R-
B represent task R’s bids. Initially, both tasks bid on A. Then they bid on the next
resource they need: Q bids on B and R bids on C. When responses come back, Q learns
that it is winning both resources. Task R learns that it is losing on A and winning on C.
Task R must now bid for B, its only choice for requirement 2, and it keeps placing
marbles on it until it outbids task Q. When Q is outbid it determines that the price
increment to win D is 0+ (i.e., any amount larger than 0), and hence places a marble on
D. At this point, both tasks are fulfilled and they stop bidding.

The second graph shows a more complex example where not all tasks can be fulfilled,
and tasks need to withdraw bids and eventually withdraw from competition. The graph
shows the evolution of the price for resource A, the amount task R bids on A (R-A), and
the amounts task S bids on resources A, B and C (S-A, S-B and S-C respectively). In this
example there are 4 tasks and 8 resources (not all shown in the graph), and S is the
poorest task with 60 points. The graph shows how S first went on a bidding war for
resource C and eventually withdrew because it needed marbles to bid on other resources.
Similarly, S had losing bidding wars for resources A and B. A, B and C were the only
choices that S had to fulfill one of its requirements, and after the three withdrawals, the
block amounts went so high that S would have had to use all its marbles to win one of
those resources, leaving no marbles to win resources for its other requirements. At that
point, S gave up, enabling the other three tasks to succeed. The price for A went down
sharply enabling the task that needed it to use its marbles for other resources. (The second
problem comes from an example that Walsh uses to demonstrate that simple auctions
cannot be used to compute optimal resource allocations when complementarities are
present. For this particular example -- but by no means for all -- Msmarbles computes the
optimal solution).

rS

Bid Value

Bid Value

1 21 41 81 101

61
Time Step

Figure 6: Bid values sequences for the Msmarbles scheme

Experience and Limitations of Msmarbles

The Msmarbles algorithm has not been as thoroughly evaluated as the others, so that
implementation bugs disqualify it from the systematic comparison with the other
algorithms in the Evaluation section. The solutions of the examples it does run are of high
quality (defined as “close to the best solutions of other schemes”). However, the scheme
is also one of the slowest, using significantly more messages than the others.

Marblesize [allocation: distributed, elimination: distributed]

The motivation of the Marblesize scheme is to allow trading off the quality of the
solution against the number of messages needed through different pre-specified Marbles
“sizes”.

In the Marblesize scheme, no resource is free and the price for a resource is determined
by the current highest bid. To acquire a resource, a task needs a certain number of
marbles. Marbles have given size that can be subdivided in equal parts an arbitrary
number of times. The size of the marbles represents the minimum amount a task can bid
on a resource. For each task, the initial marble size is equal to the task value divided by
the number of requirements in that task. At the beginning, each task selects a possible
combination of resources for its requirements and bid one marble on each of them. After
that the bidding mechanisms continues based on the following rules: (1) If a task has
more than one possible combination of resources, it chooses the cheapest one based on
the current bids on those resources and allocate all its value among them but placing at

least one marble on each resource. (2) A task wins if it is winning on all of its current
bids. (3) A task loses if it is losing on all of its current bids. (4) A task that is winning on
some of its bids can move one marble at a time from a winning resource bid to a losing
resource bid. (5) A task can cut its marble size until the marble size is less than the
minimum marble size allowed. (6) A losing task tries another resource combination and
repeats the process. If it cannot find a new combination of resources it commit suicide.

Message Protocol

Task to resource: bid (amount), withdrawal (); Resource to task: loss (), win ().

The Running Example under Marblesize
First round: Q: Marble size (150) R: Marble size (50).

A B c D
Q 1 A | A150 A
®0) [T a1s01
R 1 | as0 A
(00) [A50

Figure 7: First stage of marblesize solution to the problem

The two requirements of task Q are winning so no changes happen in that task. In task R
both requirements are losing. Since the first bidding proposal is no good it tries a second
bidding proposal [C,B] while keeping a marble size of 50.

Second round: Q: Marble size (150) R: Marble size (50).

A B c D
Q 1 A | a150 A
©@0) 5T ats01
R 1 A AS50!
(oo) 17, AS50

Figure 8: Second stage of marblesize solution to the problem

Now R is winning on C that nobody wants and tries to move its marbles from C to B.
Third round: Q: Marble size (150) R: Marble size (25).

R cuts it marble size to the minimum size of 25. Although R is still winning on C, it
cannot move its marble anymore because each resource needs at least one minimum size
marble. So R’s second proposal is declared dead. Since it cannot try a third proposal, R is
declared dead and the process terminates. (Thus, the scheme fails to find the optimal
solution for this simple problem - nevertheless it is the single best scheme we have for
large problems, as will become evident in the Evaluation section.)

A B C D
Q (300) 1 A A 150! A
2 A 150!
R (100) 1 A A25!
2 A75

Figure 9: Final stage of marblesize solution to the problem

Experience and Limitations of Marblesize

The Marblesize scheme has the unique ability to trade off solution quality against speed
of convergence. Figure 10 shows the impact that the minimum marbles size has on the
total number of messages and the quality of the solution. As is evident, it is possible to
control the minimum marble size to trade-off solution quality for computational time. In
this example, an increase of less that 1% of solution quality is paid by a 10 fold increase
in the number of messages.

Number of | Total Number of | Maximum Value
Subdivisions Messages of Solution
4 7986 19017
3 6013 18950
2 3635 18894
1 1250 18880
0 793 18649

Figure 10: Trade-off between message traffic and solution quality in msmarbles

In terms of scalability with respect to problem size, the number of messages and solving
shows a phase transition behavior where, for fixed number of resources, the number of
messages increases sharply with the number of tasks until it reaches a certain value where
starts decreasing again, resembling the critical behavior observed in other combinatorial
problems. We believe that this is due to the fact that for large number of tasks the lack of
resources leads to quick suicide of most tasks with large requirements, thus the
competition quickly decreases along the process.

Grabmarbles [allocation: distributed, elimination: distributed]

Grabmarbles is a variation of the Marblesize scheme which relies on heuristic selection
of resource combinations. As in Marblesize, a task bids on the cheapest set of resources
that will satisfy its requirements. Unlike the Marblesize scheme, rebidding is not
permitted after a losing resource bid, and bids are not based on marble sizes. Instead, a
task agent submits a bid that is a heuristic evaluation of the task, based on its domain
value, number of task requirements, and number of alternative resources. A task only
bids for resources whose prices (the evaluations of the currently winning tasks) are less
than the bidding task’s own evaluation. When a task agent loses a bid, it gives up on the
current resource set and tries another if possible. The heuristics used by Grabmarbles
were originally applied to Marbles2, and improvements in solution quality motivated the

10

application of those heuristics to Marblesize.

A heuristic task evaluation function is defined for a given task and resource. (Note that
this heuristic function actually violates the “no inflation” rule for Marbles schemes,
making it impossible to use the prices paid for resources as an indication for ther
contribution of domain value. This has not been an issue because we have only measure
pure solution quality so far.) The following example of a task evaluation function rewards
tasks that have only one or two alternative resources to choose from, otherwise penalizing
the task according to its number of requirements.
function taskeval (dval, regs, alts)

if alts = 1 return dval / regs;

else if alts = 2 return dval / (2 * reqs);
else return dval / (4 * reqgs);

Message Protocol

Task to resource: bid (amount), withdrawal (); Resource to task: loss (), win ().

The Running Example under Grabmarbles
First round: Q selects A and B.

A B C D
Q 1 A A37.5! A
(300)
2 A 150!

Figure 11: First stage of grabmarbles solution to the problem

The running example is analyzed here using the task evaluation function described above.
All resources are initially free, so task agent Q selects A and B. Q’s domain value of 300
and its 2 requirements yield an evaluation of 37.5 for resource A, while its evaluation
with respect to A (150) reflects the fact that A is Q’s only alternative resource for
requirement 2.

Second round: R selects B and C.

R 1 A A25!
(100)
2 A50!

Figure 12: Second stage of grabmarbles solution to the problem

The possible resource sets available to task agent R are (A,B) and (C,B). The cheaper
alternative is (C,B), whose total price of 37.5 is due to Q’s currently winning bid. Like
task Q, R’s second requirement has only one qualified alternative, so R’s task evaluation
with respect to resource B comes to 50. Task Q is outbid for resource B, so it withdraws
its bids and tries another resource combination.

Third round: Q selects A and D.

11

A B Cc D
Q 1 A A A37.5!
(300)
2 A 150!
R 1 A A25!
(100)
2 A50!

Figure 13: Final stage of grabmarbles solution to the problem

Task agent Q finally selects price-free resources A and D. Both tasks are now satisified,
reaching the optimal solution domain value of 400, with 15 messages passed.

Experience and Limitations of Grabmarbles

The Grabmarbles scheme produces solutions that are comparable to those of Marblesize,
with a relatively small number of messages. The use of heuristics in evaluating each
task’s “deservedness” with respect to different resources has a globally beneficial effect
on resource allocation. In the Marblesize scheme, the relative merit of competing tasks is
resolved through the process of rebidding and transferral of funds between resources. In
Grabmarbles, the selection of resources through heuristics tends to direct the task agents
toward resources they can realistically attain, while avoiding resources that are critical to
other tasks. The focus on globally beneficial resource selection helps to eliminate the
need for rebidding.

The choice of task evaluation formula used in Grabmarbles has not yet been automated.
The quality of solutions is greatly affected by how well suited the evaluation formula is
for a particular problem set. The results shown in the curves in the Evaluation section
were obtained using the following evaluation function.

function taskeval (dval, regs, alts)
return dval / reqs — 2 * alts;

This evaluation formula fails to yield the optimal solution domain value for the running
example problem. The previous formula emphasizes the lack of resources available to a
task, while the above formula only uses this as a tie-breaker. A hybrid evaluation
formula, combining features of the two shown, has produced good solutions to all of
these problem sets. But there remains a need for the automatic selection of an approriate
formula for a given problem, based on the distribution of task requirements per task, and
alternative resources per requirement.

Brute-Force [allocation: centralized, elimination: centralized]

We have built a trivial centralized brute-force solver that enumerates all possible
solutions and then picks the best one. It is impractical for more than about 15 tasks and
30 resources but serves its purpose in producing small-size challenge problems for the
Marbles schemes for which the optimal solution is known.

12

Random [allocation: centralized, elimination: centralized]

Similarly, we have built a solver which synthesizes a random solution, keeps it if it beats
the previous one, and keeps doing this until it exceeds a given time limit. We have used it
to establish lower bounds on the solution quality for large-size problems.

Simulated Annealing [allocation: centralized, elimination: centralized]

We have implemented a Simulated Annealing (SA) solver [Kirkpatrick 1983] to further
compare the results of the different Marble solvers against well-known central schemes.
The SA algorithm seeks to escape local maximum by accepting downhill moves with a
probabilistic model based on statistical mechanics. In our implementation of SA we start
by randomly assigning resources to tasks until all resources are allocated. Then, for a
number of maxFlips times, we perturb or flip the state of the system to a neighboring
state by randomly picking a task, a requirement from that task and a new resource for that
requirement from its list of eligible resources. We evaluate §, the change in the total
value, and always accept the move if § > 0. If § < 0, we accept the move with probability
exp(&/T), where T is the temperature parameter. We repeat this procedure for different
values of T, starting with a high value of T and decreasing it following a geometric
scheduling such that Ti+1= 0.5*Ti.

Experience and Limitations of the SA implementation

In terms of performance the SA solver ranks very close to but actually below the
Marblesize solver. In certain problem instances SA beats Marblesize in finding a higher
value in comparable execution size but on average Marblesize beats SA. SA provides the
maximum number of flips (maxFlips) as its mechanism for externally controlling or
trading-off quality of solution for execution time, similar to Marblesize using marble
granularity for the same purpose. Even for a surprisingly low values of maxFlips, SA
finds solutions within a few percent of the highest value with a significant speed up in
solution time. With such a low value of maxFlips, SA is our “most efficient” solver (as
measured by dividing solution quality by running time).

SAT Encoding [allocation: centralized, elimination: centralized]

We have also implemented a centralized SAT solver by encoding the resource allocation
problem into Boolean satisfiability formulas in conjuctive normal form (CNF). In this
approach, the allocation of resources to tasks is obtained by finding truth assignments to
the resulting formulas. To use satisfiability testing for optimal allocation of resources we
turn to the problem of finding valid assignments of resources for at least k (withk <N,
the total number of tasks) tasks and then do a binary search to find the maximum k. This
problem can then be encoded into a CNF formula of the following form:

f=f Af /\flAfz/\../\fN

k “cross

Where fk is responsible for switching on at least k of the variables representing the N
tasks, fcross precludes resources from being assigned to more than one requirement and fi

13

(i=1,2,...,N) selects eligible resources within each individual task.

SAT encoding of the running example

To encode the running example presented above for at least two tasks (k = 2) filled we
define the following 13 boolean variables. First we introduce the tasks variables: t1 and
t2, that represent each task in the formula. Then we define the resources variables Al1,
Al12, A21,B11,B21, C21 and D11. Where Aij=TRUE indicates the assignment of
resource A to task i requirement j. To select at least 2 different tasks variables we
introduce four additional variables p1, p2, r1, r2 with the condition that p1 = -r1, p2 = -
12, (pl,r1) = tl and (p2,12) = t2. With this variables definition, the formulas introduced
above take the following form:

fk:2 =(p VDY NG VEY NP VAP, V) /\(il v pl Vi A

(t1 Y pl) /\(t1 vrl) /\(i2 VP, vr2) /\(t2 v p2) /\(t2 vr2)

f;:ross:(Al IVAl 2) A(Al 1VA2 I)/\(Al 2VA2])A(Bl 1VB22)
f =(;1 VA VB lel)/\(f—l v A VBll)/\(fl VA;vD DA
(@ v B v D) AG v App)

fr =(t_2 VA vC21)/\(E2 v Ay vC21)/\(52 vB_)

22
We solve the resulting formula f using a Java implementation [Jackson] of the WSAT
[Selman 1993] solver. One can verify that f evaluates to TRUE by setting A12, B22, C21,
D11,t1,t2, pl and r2 to TRUE and all other variables to FALSE, which yields the
correct solution for the running problem.

Experience and Limitations of the SAT Encoding

Our current SAT-based solver performs very well compared to Marblesize and Simulated
Annealing for small and medium size problems (i.e., N = 50). For larger problems (e.g.,
N=100) the solution time degrades about an order of magnitude compared to Marblesize
and SA but it is still able to produce high value results. By controlling the number of
solutions that we ask WSAT to generate, we can externally trade-off solution quality with
execution time and the solver can sometimes find solutions within less than 5% of the
best value found with SA but with 10 to 20 times speedup. Another advantage of this
approach is that it can be used to rapidly estimate the maximum number of filled tasks
without having to search for the optimal solution. In its current implementation the SAT-
based solver is fully centralized but the same SAT encoding approach can be combined
with Marbles or other distributed market mechanisms [Walsh 1998] to produce a
distributed solver.

14

2.6 Evaluation of the MARBLES Algorithms

We evaluated the performance of the different solvers described above on synthetic
problems that have the same characteristics of the problems stated above but with
arbitrary number of resources and tasks. The problems were generated by randomly
assigning to each task a certain number of requirements and a task value. The set of
possible resources for each task was also randomly selected from the original resource
pool. These random values were independently selected from three different Gaussian
distributions. Thus, the dominant parameters in describing a given problem are: a)
number of tasks, b) number of resources, c) r, average number of requirements per tasks,
d) v, average task value and e) p, the average number of possible resources per
requirement.

28000 —a— Marblesize
24000
© 20000
2
(3]
> 16000
S
(=] d
12000 |
8000 |
4000
1.E+07
1.E+086
?
A p A
0.0 000000 o/N9 00, 620580 600 0O 5.0-°
£ 1.E+04
E
1.E+03 :_‘ vV x ot \

1.E402
0 10 20 30

Figure 14: Quantitative Comparison of MARBLES Algorithms

In Figure 14, we compare the performance of our solvers for 30 different problems with
100 resources and 100 tasks. (The problems were generated with r =4, v=300 and p =
10.) The parameters we use to evaluate performance are the total value (i.e., the sum of
the task values for all filled tasks) of a solution and the (execution) time it took the solver
to find that solution. In Figure 1a and b, we compare the results for total value and time,
respectively. We see that Marblesize, Grabmarbles and Simulated Annealing can find

15

comparable results of the total value but with Marblesize being 3 to 4 times faster than
Grabmarbles and about an order of magnitude faster than Simulated Annealing. The
results obtained with SAT and Marbles?2 are of lesser quality in terms of performance but
we see that they follow the same structure found in the other curves suggesting that all
curves are somehow converging towards an optimal solution.

~—&— Total Value / 1000 (a)
40 [—m— Number of Messages/1000
35 ---&-- Time (secs)* 10

0 200 400 600 800 0 100 400 500

Number of Resources

200 300
Number of Tasks

Figure 15: Easy-hard-easy phase-transition behavior of the total number of messages and
computational time for the Marblesize scheme. (a) 100 tasks, (b) 100 resources

In Figure 15 we study the behavior of the total number of messages, execution time and
total value of solutions found with Marblesize for different size of the problem. In Figure
15a, shows results for 100 tasks and different number of resources while in Figure 15b
the results correspond to 100 resources and different number of tasks. In both curves we
observe an easy-hard-easy phase-transition effect where the number of messages (and
time) increases very drastically as the problem gets larger until it reaches a peak and after
that drops down again. This property of Marblesize is due to the fact that unlikely to
succeed tasks drop out of the competition very early in the process and do not waste any
bidding messages. Since the distributions of task values and number of requirements per
tasks are independent, tasks with large number of resources and low task value end up
with marbles of relatively small size that makes them lose in all bids before entering
competition. In Figure 15b, the execution time continues to rise slowly after the transition
peak while the number of messages drops down and this is due to the fact that in the
initial phase tasks need to evaluate alternative combination of resources before bidding
and the total computational time of this operation increases with the number of tasks.

2.7 Work Related to MARBLES

What we are after are distributed negotiation schemes in which (1) domain experts can
understand the decisions made by negotiation participants because they use a domain
currency for making their trade-offs that the experts share, and that (2) can be “steered”
in its collective real-time response, fault tolerance, and solution quality behavior by

16

changing their relative desirability at run-time.

We list the most relevant non-market-inspired previous work on distributed resource
allocation in the References section, but do not have the space here to discuss them at any
length (they generally address neither (1) nor (2) above). Instead, we will use the
remaining space to put the auction protocols we use for resource acquisition in the
context of prior work. A negotiation protocol in our terms defines the types of messages
that can be sent and how they can be strung together (the syntax of message exchange).
In our terminology, this — together with the bidding strategies of requesters and the
auctioning strategy of requesters — defines a “scheme” for market-based distributed
resource allocation.

Walsh et al. (1998) outline the fundamental choices in this design space: (a) single-
resource auctions, (b) combinatorial auctions, and (c) Vickery auctions. We view (b)
combinatorial auctions as generally inapplicable to truly distributed assignment of
resources. This is because they need a large number of messages to coordinate between
themselves (as they cannot individually auction themselves but must bundle up with
others to be bid on in combination). We cannot say with certainty that there may not be a
space for them in real-time adaptive distributed resource allocation but we are not
currently exploring this route. In (c) Vickery auctions, every resource requester has an
incentive to report his true requirements to a centralized auction mechanism which can
then make an optimal assignment of resources (solving an NP-complete problem) and
report the assignments back to the requesters. This is obviously not an option for truly
distributed resource allocation either, and we are not investigating this avenue further
either.

This leaves (a) single-resource auctions, in which each resource can auction itself off to
the highest-value task based solely on its local bid information. Our Marbles schemes are
a subclass of single-resource auction. However, the distributed algorithms introduced for
the altruistic task suicide phase further distinguish our Marbles schemes from work on
competitive auctions. This task suicide phase is fundamental for the quick convergence of
the Marbles schemes: by lowering resource prices it usually helps other tasks succeed.

2.8 MARBLES Conclusion

It is obviously far too early for us to make any claims on how far from “optimal” in any
sense our currently implemented Marbles schemes are (be that in term of the quality of
the solution, in terms of the number of messages needed, or any combination thereof).
However we can conclude the following:

1. Marbles-type distributed collaborative negotiation schemes are an exciting and
worthwhile research program for years to come; this is because there are many “optimal”
solvers depending on how much the application domain values fault-tolerance, average
response time, real-time response guarantee, and quality of the solution.

2. We are seeing “phase transitions” in our problems as is evidenced in Figure 15; to be
precise, we are seeing Gauss-like curves for the amount of messages needed based on a
varying number of resources for a fixed number of tasks. A Marbles scheme finds out

17

quickly that few tasks can be satisfied with the very few resources, as well as that nearly
all tasks can be satisfied with the abundant resources, but uses substantially more
computation if there are “just enough resources for most of the tasks with the right
assignments”. However, we currently have no way of predicting how much negotiation a
given problem requires.

3. It seems that the Marbles schemes with good performance all seem to have the
property of eliminating (apparently) losing tasks very early on.

4. As this is work in progress we have not compared our schemes against other
distributed algorithms at great length. However, based on our performance comparisons
of our best Marbles schemes to the well-known centralized Simulating Annealing
strategy we believe that this family of market-inspired collaborative negotiation schemes
is well-suited to the real-time distributed solution of resource allocation problems.

3 Robust UCAV Peer-to-Peer Knowledge Storage

In this section, we present a scalable Peer-to-Peer Resource Description Framework
(RDF) repository, named RDFPeers. We chose RDF as the underlying knowledge
representation for the UCAV peer-to-peer storage module as it is a new World Wide Web
Consortium standard (a “recommendation”) that we expect to be widely adopted and
supported by third-party software. RDFPeers stores each RDF triple in a multi-attribute
addressable network by applying globally known hash functions. Queries can be
efficiently routed to the nodes that store matching triples. RDFPeers also supports users
to selectively subscribe to RDF content. In RDFPeers, both the neighbors per node and
the routing hops for triple insertion, most query resolution and triple subscription are
logarithmic to the network size. Our experiments with real-world RDF data demonstrated
that the triple-storing load among nodes in RDFPeers differs by less than an order of
magnitude.

3.1 Introduction

Metadata is the foundation for the Semantic Web, and is also critical for Grid systems,
[Deelman et al. 2002, Singh et al. 2003] , Peer-to-Peer systems [Nejdl 2002], as well as
distributed agent systems like UCAV swarms. RDF (http://www.w3.0org/RDF) metadata
makes flexible statements about resources that are uniquely identified by URIs. RDF
statements are machine-processable, and statements about the same resource can be
distributed on the Web and made by different users. RDF schemata
(http://www.w3.org/TR/rdf-schema) are extensible and evolvable over time by using a
new base URI every time the schema is revised. The possibility to distribute RDF
statements provides great flexibility for annotating resources.

However, distributed RDF documents on the Web are hard to discover. Putting an RDF
document on a Web site does not mean that others can find it, much less issue structured
queries against it. One approach is to crawl all possible Web pages and index all RDF
documents in centralized search engines, ““RDF Google" if you wish, but this approach
makes it difficult to keep the indexed metadata up to date. For example, it currently takes

18

Google many days to index a newly created Web page. Further, this approach has a large
infrastructure footprint for the organization providing the querying service, and is a
centralized approach on top of technologies (RDF, the Internet itself) that were
intentionally designed for decentralized operations.

Also centralized RDF repositories are not well-suited for some semantic web applications
in which data is not owned by any participant and each participant is responsible for
supporting the community. When the community scales up, the data and query load will
be so large that no participant will be able to afford the hosting cost. One example of such
application is SciencePeers, a design for maintaining shared views of scientific fields in
which the participants are peers both in the scientific sense ("“peer review") and in the
technical sense ("“peer-to-peer technology™). In this design, each member takes
responsibility for a proportional fraction of the disk storage, bandwidth, and computing
cycles to support the community. Another example is Shared-HiKE, a collaborative
hierarchical knowledge editor that lets users create, organize and share RDF data. In
Shared-HiKE, each participant has her local hierachical knowledge and also shares the
external knowledge from other participants.

Moreover, participants in the community want to quickly be notified of specific new
content, that is, they have persistent queries expressing interest in certain people,
products, or topics that are constantly serviced. For example, in addition to publishing
and querying the shared views, each participant in SciencePeers can also subscribe to
scientific topics of interest. In centralized RDF repositories without subscription support,
this could only be accomplished by constantly issuing the queries of interest every few
minutes, which will generate much unnecessary query load on the server. Also, it is
difficult for centralized subscription schemes to scale up to a large number of subscribers.
Thus, we argue that a distributed RDF infrastructure that can scale to Internet size and
support RDF metadata subscription is useful or even necessary for many interesting
semantic web applications, such as SciencePeers and Shared-HiKE.

One choice for non-centralized RDF repositories is Edutella [Nejdl 2002] that provides
an RDF-based metadata infrastructure for P2P applications. It uses a Gnutella-like
[Ripeanu et al. 2002] unstructured P2P network that has no centralized index or
predictable location for RDF triples. Instead, RDF queries are flooded to the whole
network and each node processes every query. Measurement studies [Saroiu et al. 2002,
Sen and Wong 2002] show that Gnutella-like unstructured P2P networks do not scale
well to a large number of nodes. This is because their flooding mechanism generates a
large amount of unnecessary traffic and processing overhead on each node, unless a hop-
count limit is set for queries - but then the queries cannot guarantee to find results, even if
these results exist in the network. An Edutella successor [Nejdl et al. 2003] provides
better scalability by introducing super-peers and schema-based routing; however, it
requires up-front definition of schemas and designation of super peers.

This paper presents a scalable P2P RDF repository named RDFPeers that allows each
node to store, query and subscribe to RDF statements. The nodes in RDFPeers self-
organize into a cooperative structured P2P network based on randomly chosen node
identifiers. When an RDF triple is inserted into the network, it will be stored at three
places by applying a globally-known hash function to its subject, predicate, and object

19

values. Both exact-match and range queries can be efficiently routed to those nodes
where the matching triples are known to be stored if they exist. The subscriptions for
RDF statements are also routed to and stored on those nodes. Therefore, the subscribers
will be notified when matching triples are inserted into the network. We implemented a
prototype of RDFPeers in Java and evaluated its preliminary performance and scalability
in a 16-nodes cluster. We also measured the load balancing of real-world RDF data from
the Open Directory Project by inserting it into a simulated RDFPeers network, and found
that the load balances to less than an order of magnitude between the nodes when using a
certain successor probing technique.

Application Application

Subscription
Handler

Subscription
Handler

& ¢
RIS N '

] s f B3 ——__‘\
=2 RDQL to . RDQL to
@%2\ RDF . Native ‘]/‘ : ROF § Native
0 Triple ||Subscriber) o . ¢ Triple \|Subscriber|| o o

7 Loader APl Translator Loader API Translator
- Local Native
Documents Local Native oca a
RDF Triple / Query RDF Triple / Query
Subscription Storage || Resolver JOIN, STORE, Subscription Storage || Resolver
. REMOVE,QUERY,
SUBSCRIBE, J] MAAN Network Layer
[MAAN Network Layer NOTIFY, y
KEEPALIVE
_ RDFPeer k RDFPeer)

RDFPeers Network

Figure 16: The Architecture of RDFPeers

3.2 RDFPeers Architecture

Our distributed RDF repository consists of many individual nodes called RDFPeers that
self-organize into a multi-attribute addressable network (MAAN) [Cai et al. 2003].
MAAN extends Chord [Stoica et al. 2001] to efficiently answer multi-attribute and range
queries. However, MAAN only supported predetermined attribute schemata with a fixed
number of attributes. RDFPeers exploits MAAN as the underlying network layer and
extends it with RDF-specific storage, retrieval, subscription and load balancing
techniques. Figure 16 shows the architecture of RDFPeers. Each node in RDFPeers
consists of six components: MAAN network layer, RDF triple loader, RDF Subscriber
API, local RDF triple and subscription storage, native query resolver and RDQL-to-
native-query translator.

The underlying MA AN protocol contains four classes of messages for (a) topology
maintenance, (b) storage, (c) query, and (d) subscription. The topology maintenance
messages are used for keeping the correct neighbor pointers and routing tables. It

20

includes JOIN, KEEPALIVE and other Chord stabilizing messages. The STORE message
inserts triples into the network and the REMOVE message deletes the triples from the
network. The QUERY message visits the nodes where the triples in question are known to
be stored, and returns the matched triples to the requesting node. The RDF triple loader
reads an RDF document, parses it into RDF triples, and uses MAAN's STORE message to
store the triples into the RDFPeers network. When an RDFPeer receives a STORE
message, it stores the triples into its local RDF triple/subscription storage component
such as a file or a relational database. The native query resolver parses native RDFPeers
queries and uses MAAN's QUERY message to resolve them. There can be a multitude of
higher-level query modules on top of the native query resolver that map higher-level user
queries into RDFPeers' native queries, such as an RDQL to native query translator.
Applications built on top of RDFPeers can also subscribe to RDF triples by calling the
RDF subscriber API with a subscription handler. The RDFPeers node then sends a
SUBSCRIBE message to the nodes that are responsible for storing matching triples. When
the RDF triples that match the subscription are inserted into the network, the subscribing
node will receive a NOTIFY message and notify the application to handle the triples with
the subscription handler.

3.3 MAAN Overview

MAAN [Cai et al. 2003] uses the same one-dimensional modulo-2" circular identifier
space as Chord, where m is the number of bits in node identifiers and attribute hash
values. Every node in MAAN is assigned a unique m-bit identifier, called the node ID,
and all nodes self-organize into a ring topology based on their node IDs. The node ID can
be chosen locally, for example by applying a hash function to the node's IP address and
port number. In MAAN, bundles of related attribute-value pairs such as ““name: John,
age: 27" are called ““resources”, a term we will avoid in this paper because of its different
meaning in RDF. Note that for RDFPeers' use of MAAN, a ““bundle of related attribute-
value pairs” is always synonymous with ““an RDF triple".

Unlike Chord in which these bundles can only be stored and looked up by one unique
key, they can be stored and looked up by any attribute value in MAAN. Chord uses
SHA1 hashing [NIST 1995] to assign each key a unique m-bit identifier. MAAN uses the
same hashing for string-valued attributes. However, for numeric attributes MAAN uses
locality preserving hash functions to assign each attribute value an identifier in the m-bit
space. Here, we refer to the hashing image of the key in Chord as well as to the hashing
image of the attribute value in MAAN as ““the key" that is an identifier in the circular m-
bit space. Suppose we have an attribute a, which has numeric values v which are
elements of [Vyin, Vimax]. In RDFPeers, the only attributes that can have numeric values are
the objects given that subjects and predicates are always non-numeric URIs in RDF. A
simplistic locality preserving hash function we could use is

H(V) = (v-Vmin) * (2" -1)(Vinax — Vmin), Where v is an element of [Viin, Vimax].

21

Finger Table

N14+1 => N15
N14+2 => Nt
N14+4 => N2
N14+8 => N6

CONI2

NI14+4
N NS
lookup(Key 10)-:..

iooknp(Key 11)

"""""""""" . o Finger Table

N6+1 =>N10
N6+2 =>N10
N6+4 =>N10
N6+8 =>N14

Figure 17: An 4-bit Chord network consisting of 8 nodes and 4 keys

In Chord, key £ is assigned to the first node whose identifier is equal to or follows k in the
identifier circle. This node is called the successor node of key k, denoted by successor(k).
Figure 17 shows an 8-node Chord network with 4-bit circular identifier space. Node N5
has the node ID of 5 and stores the key 3 and key 4. Similar to Chord, each node in
MAAN maintains two sets of neighbors, the successor list and the finger table. The nodes
in the successor list immediately follow the node in the identifier space, while the nodes
in the finger table are spaced exponentially around the identifier space. The finger table
has at most m entries. The i-th entry in the table for the node with ID 7 contains the
identity of the first node s that succeeds by at least 2" on the identifier circle, i.e. s =
successor(n + 2"1), where 1<=i<=m and all arithmetic is modulo 2". The finger table
contains more close nodes than far nodes at doubling distance. Thus each node only need
to maintain the state for O(log N) neighbors for a network with N nodes. For example, the
fingers of N6 in are N10 and N14. MAAN uses Chord's successor routing algorithm to
forward a request of key & to its successor node. If a node n receives a request with key &,
the node searches its successor list for the successor of k and forwards the request to it if
possible. If it does not know the successor of k, it forwards the request to the node j

22

whose identifier most immediately precedes k in its finger table. By repeating this
process, the request gets closer and closer to the successor of k. For example, if N14 in
issues a lookup request for Keyl1, it sends the request to its finger N6 that is the closest
one to Keyl1 in the identifier space. N6 then forwards the request to N0 that will
forward it to N12. Since N12 is the successor node of Keyl 1, it looks up the resource
corresponding to Keyl I locally and returns the result to N14. Since the fingers on each
node are spaced exponentially around the identifier space, each hop from node 7 to the
next node covers at least half the identifier space (clockwise) between n and k. The
average number of hops for this routing is O(log N) for a network with N nodes.

MAAN stores each bundle of attribute-value pairs on the successor nodes of the keys for
all its attribute values. Suppose each bundle has M pairs <a;,v;> and Hi(v) is the hash
function for attribute a; (Note that M is always 3 in RDFPeers, a; is always subject, a: is
always predicate, and a3 is always object.) Each bundle of attribute-value pairs will be
stored at node n; = successor(H(v;)) for each attribute value v;, where I<=i<=M. A
STORE message for attribute value v; is routed to its successor node using the above
successor routing algorithm. M nodes store the same bundle consisting of Lgdattribute-
value pairs, each by keying on a different attribute. Thus, the routing hops for storing a
bundle of attribute-value pairs is O(M log N) for bundles with M attributes.

Since numeric attribute values in MAAN are mapped to the m-bit identifier space using
locality preserving hash function H, numerically close values for the same attribute are
stored on nearby nodes. Given a range query [/, u] where [and u are the lower bound and
upper bound respectively, nodes that contain attribute value v element of [/,u] must have
an identifier equal to or larger than successor(H(l)) and equal to or less than
successor(H(l)).

Suppose node n wants to search for bundles with attribute value v element of [l,u] for
attribute a. Node n composes a QUERY message and uses the successor routing algorithm
to route it to node n;, the successor of H(I). The query message has parameters %, a, R,
and X. k is the key used for successor routing, initially k = H(I). a is the name of the
attribute we are interested in, R is the desired query range [/,u] and X is the list of bundles
of attribute-value pairs discovered in the range. Initially, X is empty. When node n;
receives the query message, it searches its local sets and appends those sets that satisfy
the range query for attribute a to X in the message. Then it checks whether it is the
successor of H(u) also. If true, it sends back the query result in X to the requesting node

n. Otherwise, it forwards the query message to its immediate successor n;. Node n; repeats
this process until the message reaches node n,, the successor of H(u). Thus, routing the
query message to node #; via successor routing takes O(log N) hops for N nodes. The next
sequential forwarding from #; to n, takes O(k), where K is the number of nodes between
n; and n,. So there are total O(log N + K) routing hops to resolve a range query for one
attribute. Given that the nodes are uniformly distributed in the m-bit identifier space, X is
N * s where s is the selectivity of the range query and s = (I — u)/Vmax — Vimin).

MAAN supports multi-attribute and range queries using a single-attribute-dominated
query resolution approach. Suppose X are the bundles of attribute-value pairs satisfying
all sub-queries, and X; are the bundles satisfying the sub-query on attribute a;, where
I<=i<=M. So we have X as the intersection of the X;, and each X; is a superset of X. This

23

query resolution approach first computes a X; that satisfies one sub-query on attribute a,.
Then it applies the sub-queries for other attributes on these candidate bundles and
computes the intersection X that satisfies all sub-queries. Here, we call attribute ai the
dominant attribute. In order to reduce the number of the candidate sets that do not satisfy
other sub-queries, we carry all other sub-queries in the QUERY message, and use them to
filter out the unqualified bundles of attribute-value pairs locally at the nodes visited.
Since this approach only needs to do one iteration around the Chord identifier space for
the dominant attribute ax, it takes O(log N + N * si) routing hops to resolve the query,
where sy is the selectivity of the sub-query on attribute a;. We can further minimize the
routing hops by choosing the attribute with minimum selectivity as the dominant
attribute, presuming, of course, that the selectivity is known in advance; in that case, the
routing hops will be O(log N + N * smin), where smin is the minimum range selectivity for
all attributes in the query.

Although the simplistic locality preserving hash function above keeps the locality of
attribute values it does not necessarily produce uniform distributions of hashing values if
the distribution of attribute values is not uniform. Consequently, the load balancing of
resource entries can be poor across the nodes. To address this problem, we proposed a
uniform locality preserving hashing function in MAAN that always produces uniform
distribution of hashing values if the distribution function of input attribute values is
continuous and if the distribution is known in advance. The former condition is satisfied
for many common distributions, such as Gaussian, Pareto, and Exponential distributions.
Suppose attribute value v conforms to a certain distribution with continuous and
monotonically increasing distribution function D(v) and possibility function P(v) =
dD(v)/dv, and v is an element of [Vpin, Vmax]. We can design a uniform locality preserving
hashing function H(v) as follows: H(v) = D(v) * (2" — 1). This load balance mechanism
assumes that we know the distribution functions of attribute values in advance. However,
this prerequisite is not always true for many semantic web applications. Section 3.13
discusses our approach to dynamically balance load among nodes by probing the load on
multiple successors when new nodes join.

3.4 Storing RDF Triples

RDF documents are composed of a set of RDF triples. Each triple is in the form of
subject, predicate, object. The subject is the resource about which the statement was
made. The predicate is a resource representing the specific property in the statement. The
object is the property value of the predicate in the statement. The object is either a
resource or a literal; a resource is identified by a URI, literals are either plain or typed
and have the lexical form of a unicode string. Plain literals have a lexical form and
optionally a language tag, while typed literals have a lexical form and a datatype URL
The following triples show three different types of objects, resource, plain literal, and
typed literal, respectively.

@prefix info: <http://www.isi.edu/2003/11/info#>
eprefix dc: <http://purl.org/dc/elements/1.1/>
@prefix foaf: <http://xmlns.com/foaf/0.1/>

24

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<info:rdfpeers> <dc:creator> <info:mincais
<info:mincai> <foaf:name> "Min Cai" .
<info:mincai> <foaf:age»> "28"**<xsd:integer> .

In order to support efficient queries on distributed RDF triples, we exploit the overlay
structure of MAAN to build a distributed index for these triples. In the STORE message
one of the three attribute values is designated as the destination of the routing, and we
store each triple three times, once each based on its subject, predicate, and object. Each
triple will be stored at the successor node of the hash key of the value of the routing key
attribute-value pair. Since the value of attribute ““subject” and ““predicate" must be a URI
that is a string, we apply the SHA1 hash function to mapping the subject value and
predicate value to the m-bit identifier space in MAAN. However, the values of attribute
““object" can be URISs, plain literals or typed literals. Both URISs and plain literals are
strings and we apply SHA1 hashing on them. The typed literal can be either string types
or numeric types, such as an enumeration type or a positive integer respectively. As
discussed above, we apply SHA1 hashing on string-typed literals and locality preserving
hashing on numeric literals. For example, to store the first triple above by subject,
RDFPeers would send the following message in which the first attribute-value pair
(*“subject”, info:rdfpeers) is the routing key pair, and key is the SHA1 hash value of the
subject value.

STORE {key, {("subject", <info:rdfpeerss),
("predicate", <dc:creator>),
{("object", <info:mincais>)}}
where key=SHAlHash("<info:rdfpeers>")
This triple will be stored at the node that is the successor node of key. Figure 18 shows
how the three triples above are stored into an example RDFPeers network. It also shows

the finger tables of example nodes N6 and N14 for illustration.

Most semantic web applications prefer high availability to strong consistency in the face
of network partitions. RDFPeers provides relaxed consistency by leveraging soft state
updates [Clark 1988, Cai et al. 2004]. Each triple has an expiration time, and the node
that inserts the triple needs to renew the triple before it expires. If the nodes that store the
triple do not receive any renewals, the triple will be removed from their local storage.
With soft state updates, RDFPeers provides best effort consistency for triples indexed at
three places.

To apply locality preserving hashing on numeric literals of RDF triples, we need to know
their minimal and maximal values. We can leverage the datatype information of the
predicates provided by the RDF Schema definition. For example, the following schema
defines that the object values of triples whose predicate is <foaf:age> are instances of
<info:AgeType>.

<foaf:age> <rdfs:range> <info:AgeType> .

<xsd:simpleType name= "info:AgeType'">
<xsd:restriction base="xsd:integer">

25

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="250"/>
</xsd:restriction>
</xsd:simpleType>

Thus the numeric literals have the minimal value 0 and maximal value 250 as defined by
the XML schema of <info:AgeType >. However, this approach assumes that the datatypes
of predicates are fixed and will not change in the future. We solve this problem by only
allowing a schema to envolve to a new version with a different namespace rather than
change the old version; and applications are responsible for updating the RDF statements
with new schemas, which is always necessary because of our soft state scheme.

Hash
URI / Literal Value in
[0, 15] .

- By subject:
<info:rdfpeers> 13 <info:mincai> <foaf-name> “Min Cai”
<info:mincai> 1 <info:mincai> <foaf-age> “28”
<dc:creator> 5 By object:
<foaf:name> 4 <info rdfpeers> <dc:creator> <info:mincai>
<foaf:age> 10 N1 ﬂ]/

“Min Cai” 7

“28” 2

14+1
N1a! ||l
ST N14+2 o’

By subject: R [By object:

<info:rdfpeers> <dc:greator> <mfo,m/nca/> [T <info:minca‘§ <foaf.age> “28”

N N14+4
AN
AN
N
Y
. N14+8
NN
NN
N .
N12 \, 1By predicate:
N6+3 *<info:rdfpeers> <dc:creator> <info:mincai>

“\ginfo:mincai> <foaf-name> ‘Min Cai”

By predicate:

N5

<info:mincai> <foaf.age> “28”

By object: x
<info:mincai> <foaf:-name> “Min Caij”

Figure 18: Storing three triples into an RDFPeers network of eight nodes in an example 4-bit
identifier space that could hold up to 16 nodes. (In reality a much larger identifier space is used, such
as 128 bits.)

Since nodes might fail and network connections might break, triples stored on their
corresponding successor nodes are replicated on their neighbors in the Chord network.
This can be done by setting the parameter Replica_Factor in MAAN. Whenever a node

26

receives a triple storing request, it will not only store the triple locally but also store it to
as many of its immediate successors as the above parameter dictates. If any node fails or
its connection breaks, its immediate successor and predecessor will detect it by checking
the KEEPALIVE messages. If the node does not come back to life after a time-out period,
nodes will repair the ring structure using the Chord stabilization algorithm. After
stabilization, the immediate successor node of the failed node will restore its replicas to
its new predecessor.

3.5 Native Queries in RDFPeers

Based on the above triple-storing scheme, we define a set of native queries that can be
efficiently resolved via MAAN's multi-attribute range queries. These native queries
include atomic triple queries, disjunctive and range queries, and conjunctive multi-
predicate queries.

3.5.1 Atomic Triple Queries

An atomic query query is a triple pattern in which the subject, predicate, or object can
each either be a variable or an exact value. The eight resulting possible queries are shown
in Figure 19.

Q1 is the most general and most expensive query that matches all triples. Since there is
no restriction whatsoever on this triple pattern, we have to propagate this query to all
nodes, which takes O(N) routing hops for a network with N nodes.

We can use MAAN's routing algorithm to resolve queries Q2 through Q8 since we store
each triple three times based on its subject, predicate, and object hash values. In these
seven query patterns, there is always at least one value that is a constant, and we resolve
the query by routing it to the node responsible for storing that constant, that node then
matches these triples against the pattern locally and returns them to the requesting node.
For example, in Figure 18 if node N6 asks the native query (<info:mincai>, <foaf:name>,
?name), we hash on info:mincai and get the hash value “*1". Then N6 routes it to the
corresponding node N1 (via NI14). N1 filters triples locally using this pattern, and sends
back the matched triple <info:mincai>, <foaf:name>, “*Min Cai" to N6 (via N5).

No. |Query Pattern {Cost |Query Semantics
Q1 | (?s,7p,?%) |O(N) |find all possible triples

given object o; of any predicate,
Q2 | (75, p, 0) log N |find the subjects and predicates of
matching triples

given predicate p;, find the
Q3 | (7s, pi, 70) log N |subjects and objects of the triples
having this predicate

27

given object o; of predicate p;,
Q4 | (?s, pi, 0) log N |find the subjects of matching
triples

given subject s;, find all
Q5 | (s;, ?7p, 20) |log N |predicates and objects of the
resource identified by s;

given subject s;, find its predicate

.9 .
Q6 | (si, 7, 0) logN that has object o;

given subject s;, find its object of

... 9
Q7 | (s, pi 70) log N predicate p;

return this triple if it exists

Q8 | (s pix 0) log Nl S herwise return nothing

Figure 19: The eight possible atomic triple queries for exact matches. The cost is measured in the
number of routing hops needed to resolve each query

3.5.2 Disjunctive and Range Queries

RDFPeers' native queries support constraints on variables in the triple patterns. Q9
extends the above atomic triple queries with a constraint list that limits the domain of
variables.

Q9 = TriplePattern 'AND' ConstraintList
TriplePattern = 01]0Q2]|03|0Q4|05{06]|Q7
ConstraintList ::= OrExpression ('&&' OrExpression)*
OrExpression = Expression ('||' Expression)*
Expression = Variable (NumericExpression

| StringExpression)+
NumericExpression ::=('>'|'<'['='"["I="|'<="]|">=")

NumericLiteral

StringExpression ::= ('='|'!=')Literal
Literal ::= PlainLiteral |URI|NumericLiteral

Variables can be either string-valued or numeric. Constraints can limit the domain of
string values by enumerating a set of either allowed or forbidden constants. Numeric
variables can additionally be limited to a set of disjunctive ranges.

(a) (?s, dc:creator, ?c) AND ?c=''Tom'' || ?c=''John"'’
(b) (?s, foaf:age, ?age) AND ?age > 10 && ?age < 20

As discussed in Section 3.3 , MAAN can efficiently resolve range queries by using
locality preserving hashing. In addition to specifying a single range, Q9 can also specify a
set of disjunctive ranges for attribute values. For example, a user can submit a range
query for variable ?x where ?x is an element of the union from i=1 through d of [I; u;].

28

Obviously, this kind of disjunctive range query could simply be resolved by issuing one
query for each contiguous range and by then computing the union of the results. For a
query with d disjunctive ranges, this takes d * O(log N + N *s), where s is the aggregate
selectivity of the d ranges. So the number of hops in the worst case increases linearly
with d and is not bounded by N. We can optimize this by using a range ordering
algorithm that sorts these disjunctive query ranges in ascending order. Given a list of
disjunctive ranges in ascending order, [I;, u;], 1<=i <= d where [; <=; and u; <= u; iff i
<= j, the query request will be first routed to node ny;, the successor node of H(I;) that is
the key corresponding to the lower bound of the first range. Node #n;; then sequentially
forwards the query to the successor node of the upper bound H(u;) if it itself is not the
successor node of H(u;). Then node n,; uses successor routing to forward the query to
node n, the successor node corresponding to the lower bound of the next range [, uz],
which in turn forwards the query to the successor node of H(uz). This process will be
repeated until the query reaches the successor node of H(uy). This optimized algorithm
exploits the locality of numeric MAAN data on the Chord ring and the ascending order of
the ranges, reduces the number of routing hops, especially for cases where d is large, and
bounds the routing hops to N. Disjunctive exact-match queries such as ?c element-of
{Tom, John} present a special case of the above disjunctive range queries where both the
lower bound and upper bound of the range are equal to the exact-match value, and we use
the same algorithm to resolve them.

3.6 Conjunctive Multi-Predicate Queries

In addition to atomic triple queries and disjunctive range queries, RDFPeers handles
conjunctive multi-predicate queries that describe a non-leaf node in the RDF graph by
specifying a list of edges for this node. They are expressed as a conjunction of atomic
triple queries or disjunctive range queries for the same subject variable. Q10 consists of a
conjunction of sub-queries where all subject variables must be the same.

Q10
TriplePatterns :

TriplePatterns 'AND' ConstraintList
(03|04 |09) +

on

In Q10, we restrict the sub-query Q9 to be the Q3-style triple pattern with constraints on
the object variable. Thus Q10 describes a subject variable with a list of restricting
predicate, object or predicate, object-range pairs.

(?x, <rdf:type>, <foaf:Persons)
(?x, <foaf:name>, "John")
(?x, <foaf:age>, ?age) AND ?age > 35

To efficiently resolve these conjunctive multi-predicate queries, we use a recursive query
resolution algorithm that searches candidate subjects on each predicate recursively and
intersects the candidate subjects inside the network, before returning the query results to
the query originator. The query request takes the parameters g, R, C, and I, where g is the
currently active sub-query, R is a list of remaining sub-queries, C is a set of candidate

29

subjects matching current active sub-query, and [is a set of intersected subjects matching
all resolved sub-queries. Initially, ¢ is the first sub-query in this multi-predicate query, R
contains all sub-queries except g, C is empty and / is the whole set. Suppose the sub-
query q for predicate p; is v <= 0; <= v, where vj; and v,; are the lower bound and upper
bound of the query range for the object variable o;, respectively. When node n wants to
issue a query request, it first routes the request to node n;; = successor(H(vi;)). The node
ny; receives the request, searches its local triples corresponding to predicate p;, appends
the subjects matching sub-query g to C, forwards this request to its immediate successor
nsi unless it is already the successor(H(vy;)). Node ng; repeats this process until the query
request reaches node n,; = successor(H(v,i)). When node n,; receives the request, it also
searches locally for the subjects matching sub-query g and appends them to C. It then
intersects set / with set C, and pops the first sub-query in R to g. If R or I is empty, it
sends the query response back with the subjects in / as the result; otherwise, it resolves
sub-query ¢. This process will be repeated until no sub-queries remain or / is empty.

This recursive algorithm takes routing hops in the worst case,

k
O (log N + N *s1))
i=1
where k is the number of sub-queries and s; is the selectivity of the sub-query on
predicate p;. However, it intersects the query results on different predicates in the network
and will terminate the query process before resolving the query on all predicates if there
are no matches left, i.e. I is empty. Thus, we can further reduce the average number of
expected routing hops by sorting the sub-queries in ascending order of selectivity
presuming the selectivity can be estimated in advance. For example, in the above three-
predicate query, the sub-query on rdf:type might match many subjects, while foaf:age
matches far fewer and foaf:name matches only a handful. After sorting the sub-queries,
we resolve foaf:name first, then rdf:age, and finally rdf:type.

3.7 Resolving RDQL Queries

RDQL [Miller at al. 2002] is a query language for RDF proposed by the developers of the
popular Jena Java RDF toolkit [McBride 2001]. RDQL operates at the RDF triple level,
without taking RDF Schema information into account (like RQL [Karvounarakis 2002]
does) and without providing inferencing capabilities. As such, it is the type of low-level
RDF query language that we want RDFPeers to support well. It is our intuition that it is
possible to translate all RDQL queries into combinations of the native RDFPeers queries
above; however, we have not yet written such a translator and it may be inefficient for
some queries, especially for joins. This section informally describes how the example
RDQL queries from the Jena tutorial
(http://www.hpl.hp.com/semweb/doc/tutorial/RDQL) would be resolved.

(1) SELECT ?x WHERE (?x, <vcard:FN>, "John Smith")
(2) SELECT ?x, ?fname WHERE (?x, <vcard:FN>, ?fname)

(3) SELECT ?givenName
WHERE (?y, <vcard:Familys>, "Smith"),

30

(?y, <vcard:Givens, ?givenName)

(4) SELECT ?resource
WHERE (?resource, <inf:age>, ?age) AND ?age>=24

(5) SELECT ?resource, ?givenName
WHERE (?resource, <vcard:N>, ?z),
(?z, <vcard:Given>, ?givenName)

(6) SELECT ?resource, ?familyName
WHERE (?resource, <inf:age>, ?age),
(?resource, <vcard:N>, ?y),
(?y, <vcard:Family>, ?familyName) AND ?age>=24

Query (1) translates directly into Q4, so that it can be resolved in log N routing hops in a
network of N nodes. Similarly, query (2) translates directly into Q3, taking log N hops.
To resolve query (3) , we first issue a Q4-style query and then use its query result as
constraint to issue a Q9-style disjunctive query with Q3-style triple patterns. Since all the
predicate values in the two triple patterns are known, these two native queries can be
resolved in 2 * Jog N hops. Query (4) is a typical Q9-style range query with the constraint
on the object value. Since its predicate value is known, we can route the query to the
node that stores the triples with predicate inf-age in log N hops.

Our native queries do not include join operations, so that we decompose join queries into
multiple native queries. Query (5) can be resolved via two Q3-style queries, and by then
joining the first triple set's object with the second triple's subject, 2 * log N routing hops.
(However, note that these two Q3-style queries might generate large-size messages if the
predicates vcard:N or vcard:Given are popular.). Query (6) can be resolved by first
issuing the same query as for the previous RDQL example for the first triple pattern.
Then we use the query result as a constraint for variable ?resource and resolve the second
triple pattern as a Q9-style disjunctive range query. Finally, we use the second query
result as a constraint for variable 7y and again resolve the third triple as a Q9-style query,
which in the aggregate takes 3 * log N hops.

3.8 RDF Subscription and Notification

3.8.1 Subscribing to Atomic Queries

RDFPeers also already implements subscriptions for atomic queries in which at least one
of the triple's values is restricted to a constant. Our basic scheme for subscriptions to
these queries is that the subscription request is routed to the same node that is responsible
for storing the triple with that value in that position. Thus, the subscription request for
(?person, ?predicate, “*Min Cai") would be routed to node N0 in the example of. If
there are multiple constants in the triple pattern, absent a-priori knowledge of the
frequency distribution, we heuristically bias to first use the subject, then the object, then
the predicate to route subscriptions, based on our experience for which positions are most
likely to have ““overly popular” values (see Section 3.12). Thus, the subscription request

31

for (?person, <foaf:age >, **28") would be routed to node N2 in our running example.

Each node keeps a local list of subscriptions, which consist of (1) a triple pattern, (2) a
requested notification frequency, (3) the requested expiration date of the subscription,
and (4) the node identifier of the subscriber. Each node internally maintains hash-based
access into this subscription list where the key is a position-constant pair. When a node
stores or removes a triple, it will also locally evaluate the matching subscription queries
and (immediately or after collecting several such matches) notify the subscribing node of
the matched triples. How often such notification messages are sent is dictated by the
larger duration of (a) the requested notification frequency, and (b) a minimum interval
between updates that the subscription-hosting node may impose. Given that we want both
data and subscriptions to survive the sudden death of any node, we replicate the
subscription list to the next replication factor nodes in the identifier space, just as we do
for the triples themselves. The repair protocol for subscription data is identical to the
repair protocol for triple data described in Section 3.4 . Conversely, it is possible that
subscriptions persist after the subscribing node has quit the network. We deal with this
issue via a maximum subscription duration parameter. Each node will periodically purge
its subscriptions list from older entries, unless a subscribing node re-issued the
subscription request more recently, in which case it will reset the age of the subscription
to the latest request date.

3.8.2 Subscribing to Disjunctive and Range Queries

In disjunctive and range queries, the object is restricted to be within one or more
disjunctive enumeration domains or numeric ranges. The basic subscription scheme for
disjunctive and range queries is similar to the one for constant queries, but the
subscription request is stored by all nodes that fall within the hashed identifiers of the
minimum and maximum range value. The routing of the subscription request is identical
to that for range queries described in Section 3.5.2 , taking O(log N + N * s) routing hops
where s is the selectivity of the range query. For performance reasons, large-selectivity
range query subscriptions are undesirable because a large number of matches would be
sent. In practice, a query for common integer values independent of a target predicate
such as (a) likely makes little sense. However, subscriptions for a narrow date range as in
(b) or historical date ranges ("“the 12th century") independent of predicate seems to be of
practical value.

(a) (2, ?, ?age) AND ?age > 0
(b) (?, ?, 2004-04-13T00:00:00Z2<=?<2004-04-16T00:00:002)

Conceivably, the network could reject range subscription requests that span more than
maximum range subscription selectivity nodes (say, 20). For example, this could be done
by having the node to which the minimum value hashes to - and which thus is the first
node in the series of nodes that would add it to its subscription list - compute the
estimated number of nodes that would be involved (selectivity in percentage of the
identifier space times estimated number of participating nodes, the latter estimated from
the size of the node's finger table), and reject it if it exceeds that threshold. This technique

32

would not prevent a node from inserting a range request that did not exceed the threshold
at insertion time but does exceed it later because of network growth, but it would prevent
the subscription from being re-inserted as-is into the larger network once the original
subscription expires. At present, we have not implemented such a rejection mechanism
for overly broad range subscriptions.

3.8.3 Subscribing to Conjunctive Multi-Predicate Queries

These conjunctive multi-predicate queries look for subjects that match multiple constant
(or constant range) predicate-object pairs. We have not implemented these subscriptions
at time of writing. A possible scheme could initially route the subscription to the node
corresponding to the first clause, which would remove and store just this first clause, and
would also store the hash value of the next clause (not the identifier of the node that it
currently maps to, given that the clause will move as nodes appear and disappear).
Another node will then store the next clause, and route the remaining clauses towards the
hash value of the next closest clause, and so on. The node storing the last clause will store
the node identifier of the node that issued the original subscription request. Then,
whenever the first clause match a new triple, the matching triples will be forwarded to the
second node in the chain. The second and subsequent nodes will only further forward
those triples that also match their local filtering criterion. There is a complication to this
scheme if range queries are involved. In these cases, in the subscription registration phase
one would always propagate the subscription request to the next nearest node involved.

3.8.4 Unsupported Subscription Types

We do not support subscriptions to the following types of queries.

1. (?, 2, ?)

2. (.) AND ((..) OR (..))

3a. (?x, <a>, ?) AND (?x, , ?)
3b. (?, ?, ?x) AND (?x, ?, ?)

The first type is inherently not scalable to large networks, and we do not intend to ever
support it. The second type consists of a combination of disjunctive and conjunctive sub-
queries. It is our intuition that this type of subscription could be supported by chaining
the techniques explained above within the network, with the leaves of the query parse
tree as the starting points. The third type consists of joins. It is our intuition that those
joins could be supported for which (a) one of the conjunctive clauses has a constant value
and for which (b) this clause by itself matches only a moderate number of triples
(example 3a). With the design of RDFPeers as described, it may not be possible to
efficiently resolve joins for which each clause by itself leads to an overwhelming number
of triples while the join between them leads to few (example 3b). However, the following
slight variation may allow RDFPeers to handle those as well. Instead of prefixing URIs
and values with ““subject:", “*predicate:", and ““object:" before applying SHA-1 hashing,
as we do now for a slight load balancing gain, we could instead not add that prefix before
hashing. In that case, the same URI hashes to the same node regardless of position. At a

33

high cost of O(N) routing hops for first broadcasting the subscription to all nodes, each
node can then locally search for a match when it stores a new triple and notify the
subscriber.

3.8.5 Extension To Support Highly Skewed Subscription Patterns

In a real-world P2P application, e.g. of scientists subscribing to each others' Weblog-like
communications, it is likely that the vast majority of scientists will have few if any
subscribers while a handful will attract nearly everybody. In the latter case, analogous to
IP multicasting for Internet video streaming, we want to avoid having to originate a
number of messages proportional to the number of subscribers from the subscription-
handling node, but rather want to construct something more akin to a real-life ““phone
tree”. We propose the following possible extension: If a node ends up with multiple
identical subscription queries by different subscribers, such as (<mailto:famous@ivy-
league.edu>, ?, ?), it will internally combine them into a single entry in its subscription
list, with multiple addresses to be notified. It will then designate the node half-way across
from it in identifier space as a replicating node for the subscriptions if the number of
subscribers exceeds a certain threshold, then one a quarter-way across if an-other
threshold is exceeded, and so on, adding up to log N ““repeater nodes" analogous in
structure to its finger table. In this case, it will send the repeater nodes those subscriber
identifiers that fall into their responsibility. The repeater nodes can then themselves set up
repeater nodes, and so on. In the aggregate, this will take O(N) notification messages if
all N nodes subscribe (the natural lower bound), and additionally leads to the busiest
nodes having to send no more than O(log N) notification messages rather than the O(N)
that need to be sent from the subscription-handling node in the naive approach.

3.9 Implementation and Evaluation

We implemented a prototype of RDFPeers in Java that extends our previous MAAN
implementation. RDFPeers is implemented as a Java library and exposes the following
API to applications:

interface RDFPeersJavaApi {
public void store(Triple t);
public void remove (Triple t);
public Iterator query(TriplePattern p);
public void subscribe (
TriplePattern p,
long durationOfSubscriptionInMs,
long minimumTimeBetweenNotificationsInMs,
SubscriptionHandler h);

}

interface SubscriptionHandler {
public void notify(Iterator added, Iterator deleted);
!

The first two methods store and remove RDF triples from the P2P network. The query

34

method lets you retrieve triples from the network by specifying a triple pattern that can
restrict values to be constants or numeric ranges. The subscribe method lets you watch
for RDF content changes by passing a triple pattern to watch for, how long you would
like this subscription to last (in milliseconds), how frequently you want to be notified,
and a call-back object; you will then be called back periodically with lists of added and
deleted triples that matched. All of these four methods throw a variety of exceptions not
further described here, such as ones for broken connections and response time-outs.

We already measured the performance of MAAN on a real-world network of up to 128
nodes in a previous paper [Cai et al. 2003]. We measured the number of neighbors per
node against the network size. Similar to Chord, the number of neighbors at each node
increases logarithmically with the network size, so that the node state in MAAN scales
well to a large number of nodes. We also measured the number of routing hops against
the network size for both exact-match queries and for range queries. The experiment
results showed that for exact-match queries, the number of routing hops in the worst case
is O(log N) and the average routing hops is log N/2. However, for range queries whose
selectivity s; > epsilon%, meaning that they select more than one node, the routing hops
increase linearly with network size. This is optimal in the sense that s; of total N nodes
have to be visited by the search queries presuming we want to evenly balance the load to
the nodes.

3.10 Routing Hops to Resolve Native Queries

The number of routing hops taken to resolve a query is the dominant performance metric
for P2P systems. Figure 20 shows our simulation result for atomic triple patterns from 1
node to 8192 nodes on a logarithmic scale, which matches our theoretical analysis.

16 ——r—p—7———7————— 7
minimum, average and maximum

14 + .

T T

e + T .

1o - T .

Routing hops
foc)
T
L

> | ; 1
I I 20 VO O O I O R

1 10 109 1000 10000

Number of nodes

Figure 20: number of routing hops to resolve atomic triple patterns Q2 through Q8

35

We also compared two disjunctive range query resolution algorithms: the simple
algorithm vs. range ordering algorithm. Figure 21 shows the simulation result for up to
1000 disjunctive exact-match values (s; = epsilon%) in a network with 1000 nodes.

8060 T T T T T T T T T
w70 range ordering —¢—

7000 w/ range ordering - e

6600 - -]
5000 .
4000 I

36060 -

Routing hops

2eve 4

1000 - i
i i I T e + -

e 1 | i I L I I
%
© 100 2PB 300 400 S50V 600 700 800 SBV 1BAY

Number of exact-match values per query

Figure 21: The number of routing hops to resolve disjunctive exact-match queries in a network with
1000 nodes

8000 T | T T T T T T |
w/o range ordering —¢—

70008 W/ range OPdePing R T—

60008 -
50008 -
4000 - .

3800 |- -

Routing hops

20008 - -

4

1@88 i renmiremam” R e }

0 1 I | 1 1 1 L 1 I
@ 100 200 300 480 500 680 706 88 S60 1000

Number of disjunctive ranges per query

Figure 22: The number of routing hops to resolve disjunctive range queries (0.1% selectivity) in a
network with 1000 nodes

36

Figure 22 shows the result for up to 1000 disjunctive ranges with 0.1% selectivity each in
the same network. From these two experiments, we can see that the range ordering
algorithm takes less routing hops to resolve a range query than the simple algorithm, and
that its routing hops are indeed bounded by N.

3.11 Throughput of Triple Storing and Querying

In this section, we present throughput measurements for triple storing operations and
query operations in a RDFPeers network deployed on a 16-node cluster. The nodes in the
cluster are all dual Pentium III 547 MHz workstations with 1.5 Gigabytes memory, and
connected with a 1-Gigabit switch.

1209 ; : : I

e i e . 3
3 P
: .
N ,
o 8o | |
o g
o &
-)
s /
r 60 [/ |

/

5 /
&)
5 40] |
3 /
o /
C /
£

20 7 |

i
-3
5] 1) . [
10 20 30 40 o Y

Number of clients

Figure 23: Aggregated throughput of triple storing increases with the number of concurrent clients
in a 12-node network

We first measured the aggregated throughput of triple storing in a RDFPeers network
with 12 nodes. We increase the number of clients that concurrently store triples into the
network from 1 to 25. Figure 23 shows that the number of triples stored per second of all
clients increases sub-linearly with respect to the number of clients. When there is only
one client, it stores 10.74 triples per second. However, 25 clients can concurrently store
94.00 triples per second. When the number of clients is more than 25, the throughput
does not increase significantly because of the computation and network limitation of our
fixed number of nodes.

37

I T T T T T T
100,009 triples —+—
. N
250 |- 19,800 triples]
SESE S —" S
- BB B :
e et R e e
@ L By]
v 200 A
e
0 B
% XE;,A
1] /{"".
5 158 + =
Gy iﬂ‘
. /
5 ;
& 1oo b i
[=)
]
o]
C
L
= 59 i
!
1] 1 1 1 1 1
20 40 60 89 160 120 140

Number of clients

Figure 24: Aggregated query throughput increases with the number of concurrent clients in a 12-
node network with 10,000 and 100,000 preloaded respectively

We then measured the aggregated query throughput for the same RDFPeers network that
preload 10,000 and 100,000 triples respectively at the beginning of the test. Each client
performed 200 queries on one RDFPeers node simultaneously and the total rate of
queries is calculated. Figure 24 shows that the query rates of two configurations both
increase sub-linearly with respect to the number of clients. When there is only one client,
the query rates are 11.08 and 11.47 queries per second respectively for 10,000 and
100,000 preloaded triples. While for 150 clients, the query rates are 214.38 and 233.20
queries per second respectively for 10,000 and 100,000 triples. Similarly to storing
operations, the query throughput also stops increasing significantly when there are more
than 120 clients. These results also show that the query rate only drops slightly when the
preloaded triples increase from 10,000 to 100,000.

These throughput results of storing and query operations are still preliminary and not
enough for applications that care about high throughput for storing and query triples. We
will further do some performance tuning for our RDFPeers implementation, such as using
asynchronous socket, customized message marshaling and unmarshaling, and batched
triple insertion.

3.11.1 Message Traffic of Subscription and Notification

We performed two experiments, running RDFPeers on the same cluster, with up to ten
nodes per machine. In the first experiment, we set up a network of N nodes, then inserted
1,024 subscription requests into the network (1,024/N subscriptions per node), followed
by inserting 16,348 triples into the network (each node inserts 16,348/N triples). Each
triple matches 8 subscriptions. Figure 25 shows that the subscription messages needed
grow logarithmically with the size of the network, 1024 * log(N), while the number of

38

notification messages needed approaches a constant, 16,348 triples times 8 subscriptions
each. It is less than that constant for small networks because some subscriptions can be
resolved within a single node. The latter are bounded by that constant assuming that the
subscription-handling node can store the network address of the subscriber and open a
direct connection to notify it, as our implementation does, otherwise, if Chord successor
routing is used, the latter number would grow logarithmically with network size as well.
Finally, as expected, the cost of inserting triples grows logarithmically with network size,
16,348 triples * the 3 times each triple is indexed * log N.

In the second experiment, we kept the number of nodes in the network constant, but
varied the percentage of topics that each node subscribes to. As expected, Figure 26
shows that the number of messages needed grows linearly with the subscription rate, both
for the subscription traffic and for the notification traffic.

300000 7 . ————— r
Subscription messages —¢—
Notification messages —+—
Triple insertion messages -8
250000 =
0 A
] o
O 200200 o b
L] e’
L - -
$ E
£ o
.. 150000 [- B
o] a
¢ e B S
o T
2 100000 | T -
5 - -
z
-
seeeo e E
/ ,a”
%) pros N o I . 9Tt
1 10 190

Number of nodes
Figure 25: For a constant number of triple subscriptions and insertions, the cost of our subscription

scheme in messages grows no more than logarithmically with network size, 128 topics, 1024
subscriptions and 16384 triples

39

800000 : | :
Subscription messages —o—
Notification messages —+-—
700000 Triple insertion messages -8 =
600000 .
0
]
o
I Ji
n S00000 |- -
v P
. 400000 - /.,* _
o P
& ..///’.
@ 3Qeeee +~ A _
Q -
£ -~
3 //,/
Z pooeoe |- A |
./"“//
1000200 g . a a o By
7 4
e Pl re ¢ < ¢
© ee 40 60 80 100

Percentage of topics subscribed (X3

Figure 26: For a constant network size and load, registration and notification traffic grows linearly
with the subscription rate, 128 topics, 64 nodes, and 8192 triples

3.12 Dealing with Overly Popular URIs and Literals

Even today's cheapest PCs have a surprising storage capacity, each can store well over
ten million RDF triples by dedicating 10 Gigabytes of its typical 80-120 GB disk.
Nevertheless, some triples in RDF such as those with the predicate rdf:type may occur so
frequently that it becomes impossible for any single node in the network to store all of
them. That is, in practice, triples may not hash around the Chord identifier circle
uniformly due to the non-uniform frequency count distribution of URIs and literals.
Figure 27 shows the frequency count distribution of the URIs and Literals in the RDF
dump of the “*Kids and Teens" catalog of the Open Directory Project
(http://rdf.dmoz.org). There are two RDF files for this catalog: kt-structure.rdf.u8.gz and
kt-content.rdf.u8.gz. The former describes the tree structure of this catalog and contains
19,550 triples. The latter describes all the sites in this catalog and contains 123,222
triples. Figure 27 shows that only 10 to 20 URIs and literals (less than 0.1%) occur more
than a thousand times.

40

100000 — T
kt-structure.rdf.u8.gz @
R kt-content.rdf.u8.gz + |
16000 .
+ e 1
g ® o000 4
) I ® 4
0 1000 | * E
o : %
0
c - 4 J
S 1ee | o ;
o
v i]
¢
L L]
10 e
i 3]
- L 2 + -4
1 el b) e —
1 10 100 1000 10008 100000

Rank of URIs and Literals

Figure 27: The frequency count distribution of URIs and literals in the ODP Kids and Teens catalog

Figure 28 lists the URISs and literals that occur more than 1000 times in kz-
structure.rdf.u8.gz. For example, since each URI as a predicate value will be stored at
only one node, this node has the global knowledge about the frequency count of this
predicate value.

We deal with predicate values that become overly popular by simply no longer indexing
triples on them. Each node defines a Popular_Threshold parameter based on its local
capacity and willingness (subject to some minimum community expectation). Each node
keeps counting the frequency of each predicate value. If a predicate value occurs more
than Popular_Threshold times, the node will refuse to store it and internally makes a note
of that. If the node receives a search request with the overly popular value for the
predicate, it sends a refusal message back to the requesting node and the requesting node
must then find an alternative way of resolving the query by navigating to the target triples
though either the subject or object values. This approach will add O(log N) to that node's
total query cost in hops. We limit subject and object values in the same way. We are
aware that this still makes the node with popular URIs a hotspot for query messages that
can be addressed by querying nodes caching which queries were refused in the past. In
essence, this means that you cannot ask e.g. “*which instances in the world are the
subclass of some class". However, these queries are so general and would return so many
triples that we suspect they would rarely be of use in practice anyway (in analogy to the
English language, where the words ““a" and ““the" occur frequently but provide little
value as search terms). For the above query, you could alternatively gather the class URIs
for which you want to look for instances for, then traverse to the instances via that set of
URIs by issuing a Q4-style query.

41

Frequency |URI or literal Type
3158 rdf:type predicate
3158 dc:Title object
2612 http://dmoz.org/rdf/Topic object
2612 http://dmoz.org/rdf/catid predicate
2574 http://dmoz.org/rdf/lastUpdate | predicate
2540 http://dmoz.org/rdf/narrow predicate
1782 http://dmoz.org/rdf/altlang predicate
1717 dc:Description object

Figure 28: URIs and literals that occur more than one thousand times in kt-structure.rdf.u8.gz

Figure 29 shows the minimum, average, and maximum number of triples per node with
Popular_Threshold from 500 to 32,000. In this experiment, we store both
ktstructure.rdf.u8.gz and ktcontent.rdfu8.gz (total 142,772 triples) into a network of 100
physical nodes (and the standard Chord log(100)=6 virtual nodes per physical node for
trading off load balancing against routing hops). When Popular_Threshold=32,000, there
are no overly popular URISs or literals being removed and there is an average of 4303
triples per node. However, the load is unevenly balanced - the minimum number of
triples per node is 700 while the maximum number of triples per node is 36,871. When
Popular_Threshold is set to 500, there are 20 overly popular URIs and literals being
removed from indexing and there are an average of 2352 triples per node. The minimum
number of triples per node is 688 while the maximum number of triples per node is
reduced to 4900 - which we believe at less than an order of magnitude difference is
acceptable load balancing.

42

40000 e —
minimum, average and maximum F—&—i

350090 - -
30000 - -
25000 - n
20000 - 1
150680 + =

16006 .

5@@@—'}'”} % ll | I“‘—

1608 10600
Threshold of popular URIs and Literals

Number of triples per node

Figure 29: The number of triples per node as a function of the threshold of popular triples (100
physical nodes with 6 virtual nodes per physical node)

3.13 Load Balancing via Successor Probing

Although limiting overly popular URIs and literals greatly reduces the difference
between the maximum and minimum number of triples per node, the triples are still not
uniformly distributed around all nodes. This is because the frequency count distribution
of non-popular URIs and literals remains non-uniform even after removing overly
popular values. We propose a preliminary successor probing scheme inspired by the
““probe-based" node insertion techniques of [Ghandeharizadeh et al. 2003] to further
achieve a more balanced triple storage load on each node. In Chord, the distribution of
node identifiers is uniform and independent of the data distribution. In this successor
probing scheme, we use a sampling technique to generate a node identifier distribution
adaptive to the data distribution. When a node joins the network, it will use SHA1
hashing to generate Probing_Factor candidate identifiers. Then it uses Chord's successor
routing algorithm to find the successors corresponding to these identifiers. All the
successors will return the number of triples that would be migrated to the new node if it
joined there, and the new node will choose the identifier that gives it the heaviest load.
The cost of this technique is that it increases the insertion time of a triple from log N to
Probing_Factor * log N. 1t is our intuition that log N is a good setting for the probing
factor.

43

8000 T T T T
minimum, average and maximum F—o—
/000 ~ N
60080 - -
50080 N
4000 T T .

3000 .

2080 -

Number of triples per node

1000 1 1 1 -

L 1] !
© e 4 S) 8 10

Number of successors probed

Figure 30: The number of triples per node as a function of the number of successor nodes probed
(100 physical nodes, Popular_Threshold=1000)

Figure 30 shows the minimum, average and maximum number of triples per node with
Probing_Factor from 1 to 9 in a network with 100 physical nodes. The
Popular_Threshold is set to 1000 in this experiment. If there is no successor probing, the
most loaded node has 7.2 times more triples than the least loaded node. If each node
probes 9 nodes when it joins, the node with the heaviest load only has 2.6 times more
triples than the node with the lightest load - which further reduces load imbalances to
much less than an order of magnitude. We can further improve load balancing with a
background virtual node migration scheme proposed in [Rao et al. 2003], subject to the
limitation that it cannot distribute the load for a single overly popular value.

3.14 Related Work

Our work on RDFPeers was inspired by a number of research traditions including RDF
metadata management, structured peer-to-peer systems, and publish/subscribe systems.

3.14.1 RDF Metadata Management Systems

Many centralized RDF repositories have been implemented to support storing, indexing
and querying RDF documents, such as RDFDB [Guha], Inkling [Miller], RDFStore
(http://rdfstore.sourceforge.net) and Jena [McBride 2001]. These centralized RDF
repositories typically use in-memory or database-supported processing, and files or a
relational database as the back-end RDF triple store. RDFDB supports a SQL-like query
language, while Inkling, RDFStore and Jena all support SquishQL-style RDF query

languages. Centralized RDF repositories are very fast and can scale up to many millions
of triples. However, they have the same limitations as other centralized approaches, such
as a single processing bottleneck and a single point of failure.

To support integrated querying of distributed RDF repositories, Stuckenschmidt et al.
(2004) extend the Sesame system to a distributed architecture that introduces a RDF API
implementation (Mediator SAIL) on top of the distributed repositories. Their work
focuses on the index structure as well as query optimization in the mediator SAIL
implementation. This mediator approach can support arbitrary complex queries and
works well for small size of data sources. However, it is difficult for this approach to
scale up to Internet size of data sources. Edutella [Nejdl 2002] and its successor super-
peer based RDF P2P network [Nejdl 2003] were discussed in Section 3.1 . Super-peers
are often desirable in order to place the load unevenly among heterogeneous nodes, but
our scheme can achieve the same effect more flexibly by nodes hosting more or fewer
Chord virtual nodes according to their capacity. REMINDIN [Tempich et al. 2004]
developed a lazy learning approach for the SWAP platform [Ehrig at al. 2003] to
efficiently route semantic queries based on social metaphors. However, it only learns how
to forward simple queries and still lacks efficient algorithm for complex queries.

Much work in the Semantic Web and information integration literature has been
emphasized on solving the semantic interoperability problem among data sources with
heterogeneous ontologies. ChattyWeb [Aberer et al. 2003] enables the participating data
sources to incrementally develop global agreement in an evolutionary and completely
decentralized bottom-up process by learning the graph of local mappings among schemas
through gossiping. Piazza [Halevy et al. 2003] also eliminates the need for a global
mediated schema by describing the mappings between sets of XML and RDF source
nodes and evaluating those schema mappings transitively to answer queries. These two
systems forward queries to the peers based on schema similarities, which is
complementary to RDFPeers that indexes instances of RDF statements. It might be
interesting to develop some hybrid systems that leverage schema mapping on the top of
RDFPeers.

3.14.2 Structured Peer-to-Peer Systems

Recent structured P2P systems use message routing instead of flooding by leveraging a
structured overlay network among peers. These systems typically support distributed
hash table (DHT) functionality and offer the operation lookup (key), which returns the
identity of the node storing the object with the key [Ratnasamy 2001]. Current proposed
DHT systems include Tapestry [Zhao 2001], Pastry [Rowston and Druschel 2001], Chord
[Stoica 2001], CAN [Ratnasamy 2001], and Koorde [Kaashoek and Karger 2003].

These DHT systems provide scalable distributed lookup for unique keys. However they
can not support efficient search, such as keyword search and multi-dimensional range
queries. Reynolds and Vahdat (2003)] proposed an efficient distributed keyword search
system, which distributes an inverted index into a distributed hash table, such as Chord or
Pastry. To minimize the bandwidth consumed by multi-keyword conjunctive searches,
they use bloom filters to compress the document ID sets by about one order of magnitude

45

and use caching to exploit temporal locality in the query workload. For large sets of
search results, they also use streaming transfers and return only the desired number of
results. pSearch [Xu and Dwarkadas 2003] is another peer-to-peer keyword search
system that distributes document indices into a CAN network based on the document
semantics generated by Latent Semantic Indexing (LSI). It uses content-aware node
bootstrapping to force the distribution of nodes in the CAN to follow the distribution of
indices.

Andrzejak and Xu et al. (2002) extend CAN for handling range queries on single
attributes by mapping one dimensional space to CAN's multi-dimensional space using
Hibert Space Filling Curve as hash function. However, this work did not address multi-
attribute range queries. In contrast to Andrzejak's system, Schmidt and Parashar (2003)
proposed a dimension reducing indexing scheme that efficiently maps the multi-
dimensional information space into the one dimensional Chord identifier space by using
Hibert Space Filling Curve. This system can support complex queries containing partial
keywords, wildcards, and range queries. PIER [Heubsch et al. 2003] focuses on design a
massively distributed query engine based on DHT systems, especially for distributed
equi-joins. Their join algorithms are based on a multicast primitive that flood the query to
all nodes in the same namespace. However, PIER does not support efficient range
predicates because DHTSs are a hashing mechansim. Actually the work in PIER is
complementary to RDFPeers for supporting efficient join operations.

3.14.3 Publish/Subscribe Systems

Besides RDFPeers, there are several other distributed RDF metadata management system
that provides publish and subscribe mechanisms. MDV [Keidl 2002] is a distributed RDF
metadata management system based on a 3-tier architecture and supports caching and
replication in the middle-tier. It implemented a filter algorithm based on relational
database technology that efficiently computes all subscribers for created, updated and
deleted RDF data. Chirita et al (2004) proposed a peer-to-peer RDF publish/subscribe
system that was based on a super-peer based RDF peer-to-peer network. In contrast to
RDFPeers, subscriptions in this approach are selectively broadcast to other super-peers
based on their advertisements, while subscriptions in RDFPeers are routed to and store on
a particular node that is also responsible for storing matching RDF statements.

Publish/subscribe systems have also been studied extensively in the networking and
distributed systems literature [Carzaniga et al. 2001, Castro et al. 2002, the CORBA
Notification Service 1.0.1, the Java Distributed Event Specification, the Web Services
Notification standard]. However, those systems typically only support topic-based or
type-based subscriptions. In contrast, RDFPeers and other metadata publish/subscribe
systems allow more expressive subscriptions for metadata. Recent advances in distributed
hash tables also enable a new class of scalable publish/subscribe systems [Castro et al.
2002, Tam et al. 2003] that do not rely on a centralized server nor on subscription
broadcasting.

46

3.15 Conclusion, Robust P2P Knowledge Storage

We would like to implement the RDQL-to-RDFPeers native queries translator that we
have only sketched in this paper, and improve load balancing using a background virtual
node migration scheme. We would also like to take more measurements of the scalability
of our subscription design, such as throughput stress tests: ~*For what number of
subscribers (UCAVs), subscribing to how much content, does the scheme break, not just
in terms of abstract routing hops, but in reality for our actual Java implementation?".

In conclusion, RDFPeers provides efficient distributed RDF metadata storage, query and
subscription in a structured P2P network. It avoids flooding queries to the network and
guarantees that query results will be found if they exist. RDFPeers can also balance the
triple-storing load between the most and least loaded nodes by using successor probing
scheme. Its state cost in neighborhood connections is logarithmic to the number of nodes
in the network, and so is its processing cost in routing hops for all insertion, most query
and subscription operations. RDFPeers offers subscriptions that, assuming a fixed
number of subscriptions per node, scale to networks of many nodes. RDFPeers also
preserves subscriptions as well as the original data by replicating content to a fixed
number of nearby nodes so that the network can repair itself without data loss when a
node (UCAV) suddenly dies. RDFPeers thus enables fault-tolerant distributed RDF
repositories of truly large numbers of participants. We hope it can become the basis for a
new type of metadata-driven and egalitarian community applications on the Internet.

4 Transitions to Military Applications

A MARBLES sister project delivers the SNAP flight scheduling application, which
includes software produced by the MARBLES project. SNAP is fielded at the following
locations:

Marine Air Group 13 in Yuma. The system was fielded in all 4 squadrons.

Marine Expeditionary Units. The system was fielded on board the USS Bonhomme
Richard, the USS Belleau Wood, the USS Pelleliu and the USS Essex that conducted
operations in Iraq, Japan and Afghanistan.

The software produced by the MARBLES sister project involves over 500,000 lines of
code. Of these about 40% is part of the generic negotiation framework, and 60% is
application specific; the MARBLES project contributed about 15,000 lines of the code to
the former. The rest of this section provides a short overview of the SNAP application
that embodies MARBLES-contributed code.

Marine Corps Harrier squadrons consist of two planning units — operations (what to fly)
and maintenance (how to schedule work on the aircraft to support the operations). SNAP
addresses the operational side of flight scheduling (a sister application from Vanderbilt
University addresses the maintenance side, which is not further discussed here).

The commanding officer of the squadron defines the overall schedule goals for a given
planning horizon. For example, for the squadron to participate in a certain training
exercise, a possible short-term goal is to have Smith and Jones obtain their night systems

47

qualification, to fly 20 sorties per day and to maintain flight equity (meaning that every
pilot obtains roughly the same number of flight hours). The commanding officer also
gives yearly and monthly guidance, for example how much fuel and ammunition should
be expended.

The operations officer and his/her staff then produce weekly schedules to meet the
guidance, and refine those weekly schedules every day to produce the daily schedules
that actually get executed. The operations and maintenance office communicate
frequently to coordinate their schedules: in order for the operations office to produce a
schedule they need to know how many aircraft of each type are available. In order to
answer that question the maintenance office needs to know the flight schedule in order to
figure out whether they have time to carry out all the usage-based and calendar-based
maintenance that must be done on the aircraft. (Usage-based maintenance is performed
after the aircraft has accumulated a number of flight hours; calendar-based maintenance
is performed after a predefined number of days pass — even if the aircraft has not been
flown at all.) The cycle is broken by starting with estimates and refining those estimates
though iterative refinement of the schedules.

4.1.1 Manual Harrier Flight Scheduling Today

The users have databases or paper manuals that provide all the information relevant for
producing the schedules. The Operations office of a squadron has databases that record
the flight logs of each pilot, their qualifications, etc. The Maintenance office has
databases that record all the maintenance work items that must be performed or are being
performed on each aircraft.

These databases have viewers and editors that allow users to see what is happening, and
to edit the information. The Operations office has a sophisticated schedule editor
application that enables users to enter and format flight schedules, but they do not have
an application that computes a schedule. The users determine the flight schedules
manually, typically on a white board, and then enter it in the computer to print the official
schedules that get signed by the commanding officers. The maintenance schedules are
kept on a white board and on paper and are currently never entered in a computer.

4.1.2 The Challenge in Automating the Flight Schedule

The challenge is to automate the production of the operations and maintenance schedules.
The payoff is large because developing the schedules by hand is labor intensive and time
consuming (typically 6 hours for a weekly operations schedule), and little time is left to
explore alternatives and to deal with often changing requirements. In addition, producing
schedules that extend beyond a week is infeasible, resulting in commanders having
limited ability to forecast the consequences of taking on new commitments (e.g., can you
participate in a week-long exercise at the beginning of next month and still make your
deployment commitments 6 months from now?)

48

4.1.3 Highlights of the Automated Flight Scheduling System

Figure 31 shows a screen shot of the display where operators can specify the last three
types of goals (in addition to variations of these goals). Each row corresponds to a
separate goal (also referred to as an objective). The table at the right of the image shows a
history of how well different versions of the schedules satisfy the goals. In this example
the operator is getting close to a satisfactory schedule. The schedule contains 2 more
sorties than desired, and one pilot is flying too much.

File . Edit) pﬂissioft Commands R_eportsr o
) PR L . _ . _ _ _ N .
C'{, VMA-311 (2004-04-21722:54:38-07.00) Run SNAP—J Done running the keual Solver in @3 seconds
Framework] Pilmsl Aircraﬁ] Operationa! Planningl Missiunsl Missions Timeline Metrics | Schedule Editnr[
Sort by importance ’ Sort by pilot names I
Ohjectives
7 Jrequire ¥ | sortie cycles to be filied 92/90 88/90 9490 j
¥ iprefer v selection of assigned ranges
Duncan & jprefer | #sorties between B and |5 per [schedule ¥ 335 335 335
Forrest W |prefer LI # sorties between 3 and |5 per [schedule 'i 535 335 435
L350 7735 -
Gering W |prefer E] # sorties between i~ and[5 per [schedule '] R 535
Havener W lprefer # sorties between l3 and |5 per |schedule ¥ i 535 55 535
Kaczorowski |prefer ¥ # sorties betweenﬁ and 5 per !schedule v 435 545 535
Kuckuk W iprefer v| #sorties between i and 5 per [schedule '} 35 35 b
Rivera ¥ lprefer ¥ # sorties betweenﬁ and [5 per {schedule 'i 4135 o 435 -
set pilot sorties | betwean El—w and fﬁw per {schedule 'l I show countsitargets I show scores
" Obj quuauron, i

Figure 31: Fine-tuning scheduling preferences in the Metrics screen

The objective function is a linear combination of metrics that specify how well each goal
is achieved. Each goal is scored using a piece-wise linear function that specifies how
good it is to obtain a certain quantity of something. For example, an objective function
for the number of sorties goal could be specified as follows: flying 0 sorties gives a score
of 0, flying 90% of the sorties gives a score of 0.5, and flying 100% gives a score of 1.

The score of a schedule is specified as a linear combination of the score for each goal.
Note: in the implemented system, the user interface did not allow users to give numeric
weights. Instead we offered the values "require”, "prefer" and "don't care”, which were
defined in such a way that all the "prefers" weighed less than a single "require” (see

Figure 31).

49

One of the lessons learned in the logistics challenge problem is that it is very difficult for
users to specify an objective function that captures all the issues they care about. We
found that it was only after seeing a solution that users would think about trade-offs that
would be impractical to specify in advance (e.g., I'll accept having Jones fly 8 rather than
5 sorties if that is the only way I can get Smith's night systems qualification done).

The structure of a task is shown in Figure 32, which shows the segments and the
resources that participate in a task. The segments are shown as a time line at the top of
the image. Each segment has a name and duration. For example, the first segment is the
“brief” segment during which the pilots attend a briefing on the mission they are about to
perform. Its duration is 120 minutes. Each row in the image represents a resource that
participates in the task. The first two rows labeled “Lead” and “Wing” represent the
pilots. The green bars represent the segments during which resources are needed. For
example, the pilots are needed during all segments, whereas the aircraft are needed only
after the briefing segment.

from to fiom
brief torange stunge range omground pit rtange atrange range dabriaf

120 0 20 30 20 45 10 35 120 15

Figure 32: The interactive time-line display for fine-tuning mission segments

Figure 33 shows the results of running the scheduler. Scheduled tasks are marked with a
green icon, whereas tasks that the system was unable to schedule are highlighted with a
red “X”. Also, the resources and times that the system assigned to the tasks are shown in
green. Users are free to override any system decision by selecting a task and invoking the
task editor.

50

B3 CAMERA flight schedule.snap® (SNAP Version 0.7.1.872) [—j@@]
File Edit Mission Commands Reports L

fgz VMA.311 (2004-04-21T23:27:44-07:00) _._Fiun SNAP Done tunning the Serial Solver in 81 seconis
Framewark | Pilots | Aircratt | Operational Planning E : ﬂ?_‘g] Missions Timeline | Metrics | Schedule Editor] %
Search: lShow all items ::_] 76 items.
<
P ”» . c,' . _WIngFRAG 4 Wed14Apr1216 AR Duncan: 247 Schaffner 247 = base -» MCAS 28 Pelms, ¢, Aspe
. . . Mg FRAG & Moq12M1ZBU AAR . Dlmn: M,S:hd(ncr. 204 o I;noe »D,D,U
e L WIngFRAG 4 Tue13Apr0935 AAR Duncan 204, Schaffnr 204 bese 000
. " WIngFRAG 44 Thu15Apr14:8 LAT Schroder 227, Havener 227 . base oo
o M % SECHU) s Mon12Apr0400 DESIG Haynes 641 SECLOR,Wolmen641 bese 000
L » ¥ SEC(ould) #4 Tue13AprO700 DESIG Antolino: 641 SEC LOR, Wolmaen: 641 base) .. . boo
. » % ACM(ouid) 4 Wed 14 Apr 07.00 DESIG Dale: 647 ACM FLT LOR, Woitman: 647 base) 00,0
. " W SECluld) 4 Tus13Apr0700 DESIG Haynes: 642 SECLOR,Long 642 base o o000
. | ¥ SECEUI) 4 Mon12Ap 0400 DESG Antolino: S42SECLOR,Long 642 bese 000
'. [4 % ACM(bult) 6 Mon12 Apr 04:00 DESIG Dale: 648 ACMFLT LDR, Forrest 648 base 00,0
= B % SEC(buld) # Wed14 Apr07.00 DESIG Heymes: 643SECLOR tong 643 ~ ~ bege 000
) » ¥ SEC(ould) 4 Wed14 Apr07:00 DESIG Antolino: 643 SECLOR, Bleke: 643 base o o ... 000
L m § ACMQuid) 4 Tue13Ap1000 DESIG Dale: GASACMFLTLOR,Forrest 848 base T | X
‘- ® Y LAT(ould) 0 oo " LAT Edholm: 220 LAT G, — (monitor) base 0.0
I N SEC(buid) 4 Thu15Apr07.00 DESIC Hwmes: 844 SECLDR.Long 644 ~ baes 000
o » ¥ SEC(ould) 4 Thu1SApr07.00 DESIG Antolino: 644 SECLOR,Woltmen:644 base 000
2 ¥ ACMQouid) W Thu1SApr10.00 DESIG Dale:B50ACMFLTLOR,Bke:650 bess
l.' » & LAT(ouid) $} Wed14 Apr10:00 LAT Schwoder 223 it 224, Edholnn: 223 LAT G pt 22 base pit
= [& _SEC(ouild) 4% Fri16Apr07:00 DESIG_ Haymes: 645 SEC LDR, Long 645 base 00,0
= [] 'y SEC(build) 4 Sst17 Apr07:00 DESIG Haynes: 646 SEC LOR, Long: 646 base 00,0
[~ B LAT (Low AN §{ Fri16 Apr06:27 LAT Schafiner: 225 pd 225, Kuckuk: 2251t 225 MCAS 28 Pelms;, CA ->bas_pit 00,0
b " W LAT(LowAN {} Mon12apr11:00 LAT Havener: 2232 223, Blake: 223 p1 223 base o pt . on@
[- § LAT(owAS §§ Mon12Apr07.00 LAT Whalen: 225 pt 225, Rivers: 225 it 225 base et 03,0
0] § LAT(owAl §§ Sun18.Ap 0700 LAT Gering 22511 225, Long 225 (1 225 base St ..., 000
. !' =» B 1ATAmw Al # TiwaAmannn @ AT Marvrrnueli ME it ME Ronhar 16 0t M5 hesa .T nH_J
PN IR S SO R ISR RS S ISR TN NS P

Figure 33: The resulting overall schedule (system choices are in green)

When a task fails to schedule, the user has to go back to step 1 (Specify the problem) to
modify the problem so that the solution that the system can produce is satisfactory for the
user. We call this iterative step problem reformulation.

There are typically many ways to reformulate a problem to achieve a satisfactory
solution. The choice depends on the trade-offs that users are willing to make. Users can
make more resources available, they can override certain constraints that prevent a task
from scheduling (e.g., in the previous image the user waived the light constraints on the
first task, as indicated by the moon and stars icon), they can change priorities, they can
scale back their goals, etc. The system provides extensive editing capabilities that allow
users substantial freedom in reformulating their problem.

When a task fails to schedule, the user can invoke the task feasibility display to
understand why the task failed to schedule and what could be done to allow it to
schedule. Figure 34 shows the feasibility display. It contains a row for each resource
requirement of a task and for the constraints that it must satisfy. The planning horizon for
the schedule is shown horizontally. Each point on the horizontal axis represents a
potential start time (e.g., take-off time of a flight) for a task. The green bars in a row
represent possible task start times when resources listed in that row and the rows above

51

are available. A red bar appears in a row when that row is the first row that causes some
possible start times to be eliminated. The blue bars represent the start times when a
particular resource is available. For example, the first row has uninterrupted blue and
green bars. This means that the Mission Specified Time does not restrict the start time of
the task at all. In other words, the user left the start time open. The second row
corresponding to Fly Day Times has smaller blue bars. This is because the Fly Day
specifies the times of day when flight operations are to be conducted and thus only start
times that allow a task to start and end within those hours are allowed. The red bars in the
Fly Day Times indicate possible start times that got eliminated because of the Fly Day
restrictions. Similarly, going down the display it is easy to see that no pilot was available
to fill the Lead position of the task until sometime late on Thursday. The Lead eliminated
all possible start times on Monday through Thursday, and allows start times only on
Friday, Saturday or Sunday. Looking further down in the display one can see that the task
did not get scheduled because no appropriate ranges could be found (see last row).

The feasibility display is very powerful. For example, one can see that in order to
schedule the task earlier during the week several things need to happen (in addition to
making an appropriate range available). Wednesday is bad because no appropriate pilots
can be found to fill the Lead or Wing positions. Tuesday is a good possibility because
only the Lead is missing. Monday would work too, but might be harder to pull off
because Wing pilots are only available for part of the day.

52

Fly Mission Time

=

Ia ll
™
Ha

Enabled Rules ¥ Lighting (sunrise/sunset, etc.} F Crew day, etc. (see Schedule Preferences)

Figure 34: Understanding scheduling possibilities via the feasibility display

Producing a satisfactory schedule often involves several reformulations in practice. 10
reformulations for a weekly schedule are typical. Given that the scheduler can compute a
weekly schedule in about 1 minute, the process can be completed in 15 to 20 minutes (it
takes about 6 hours to complete a schedule without the system, so there is no way to
achieve a schedule of the same quality without SNAP).

In summary of this section on SNAP, we are proud that the MARBLES project not only
resulted in novel published research (see Section 1 for the publication record), but also
contributed software to a fielded military application.

5 Acknowledgements

53

The successor probing technique of Section 3.13 was inspired by discussions with
Shahram Ghandeharizadeh and Antonios Daskos about load balancing techniques. We
are grateful to Ann Chervenak and Mats Rynge for their support of our work on the
Center For Grid Technologies computing cluster. We thank Sameer Maggon for
implementing the GUI of Shared-HiKE. We also gratefully acknowledge feedback from
Stefan Decker and Geoff Pike. Last but not least, we thank the Air Force Office of
Scientific Research for supporting our work.

6 References

Aberer, K., Cudré-Mauroux, P., and Hauswirth, M. The chatty web: Emergent semantics
through gossiping. In the 13th World Wide Web Conference (WWW2003), May 2003.

Andersson, M., and Sandholm, T. 1999. Time-Quality tradeoffs in reallocative
negotiation with combinatorial contract types. In Proceedings of AAAI-99, Orlando,
Florida.

Andrzejak, A. and Xu, Z.. Scalable, efficient range queries for grid information services.
In Second IEEE Int'l Conference on Peer-to-Peer Computing (P2P2002), Sep. 2002.

Atkins, E.; T. Abdelzaher; Shin, K.; and E. Durfee, E. 1999. Planning and resource
allocation for hard real-time. In Proceedings of the Third International Conference on
Autonomous Agents, Seattle, Washington.

Boutilier, C.; Goldzmidt, M.; and Sabata, B. 2000. Sequential auctions for the allocation
of resources with complementarities. In Proceedings of IJCAI-99, Stockholm, Sweden.

Cai, M., Shahram Ghandeharizadeh, S., Schmidt, R., and Song, S. A Comparison of
Alternative Encoding Mechanisms for Web Services. Proceedings of the 13th
International Conference on Database and Expert Systems Applications (DEXA), 10
pages, (Aix en Provence, France, September 2-6) 2002.

Cai, M, Frank, M., Chen, J., and P. Szekely. MAAN: A multi-attribute addressable
network for grid information services. In 4th Int'l Workshop on Grid Computing, 2003a.

Cai, M., Frank, M., Chen, J., Szekely, P. MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. 4th International Workshop on Grid Computing
(Grid2003), 8 pages, (Phoenix, Arizona, Nov 17) 2003b.

Cai, M. and Frank, M.. RDFPeers: A Scalable Distributed RDF Repository based on A
Structured Peer-to-Peer Network University of Southern California - Computer Science
Technical Report 03-807, December 2003c. (cite the WWW2004 paper below instead,
this is the version of the paper as it was submitted)

Cai, M., Chervenak, A., and Frank, M. A peer-to-peer replica location service based on
a distributed hash table. In the 2004 ACM/IEEE Conference on Supercomputing

54

(SC2004), 2004a.

Cai, M. and Frank, M. RDFPeers: A Scalable Distributed RDF Repository based on A
Structured Peer-to-Peer Network. 13th International World Wide Web Conference
(WWW2004), 8 pages, (New York, May 17-22) 2004b. [14.6% acceptance rate, 74 out of
506]

Cai, M., Frank, M., Chen, J., Szekely, P. MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. Journal of Grid Computing, Kluwer, 2004c
(accepted for publication on April 6, 2004).

Cai, M. and Frank, M.. A Scalable and Subscribable Peer-to-Peer RDF Repository for
Distributed Metadata Management. Journal of Web Semantics, 2004d (status: accepted
with minor revisions)

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19(3):332-383,
2001.

Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron, A. Scribe: A large-scale and
decentralised application-level multicast infrastructure. IEEE Journal on Selected Areas
in Communications (JSAC), 2002.

Chen, J., Bugacov, A., Szekely, P., Frank, M., Cai, M., Kim, D. and Robert Neches, R.
Distributed Resource Allocation: Knowing When To Quit. Representations and
Approaches for Time-Critical Decentralized Resource/Role/Task Allocation Workshop of
the Second International Joint Conference on Autonomous Agents & Multi-Agent Systems
(AAMAS 2003). Melbourne, Australia (July 14) 2003.

Chirita, P. A., Idreos, S., Koubarakis, M., and Nejdl, W. Publish/subscribe for RDF-based
P2P networks. In the Ist European Semantic Web Symposium (ESWS 2004), May 2004.

Choy, M., and Singh, A. 1992. Efficient fault tolerant algorithms in distributed systems.
In 24th ACM Symposium on Theory of Computing, pp. 593-602.

Collins, J.; Sundareswara, R.; Tsvetovat, M.; Gini, M.; and Mobasher, B. 1999. Search
strategies for bid selection in multiagent contracting. In JCAI-99 Workshop on Agent-
mediated Electronic Commerce (AmEC-99).

Clark, D. D. The design philosophy of the DARPA internet protocols. In ACM
SIGCOMM, pages 106-114, Stanford, CA, Aug. 1988.

Decker, S. and Frank, M. The Networked Semantic Desktop, WWW'2004 Workshop on

Application Design, Development and Implementation Issues in the Semantic Web, May
18th, 2004.

55

Deelman, E., Singh, G., Atkinson, M. P., Chervenak, A., Hong, N. P. C., Kesselman, C. ,
Patil, S. , Pearlman, L. , and shi Su, M. Grid-based metadata services. In 16th

International Conference on Scientific and Statistical Database Management
(SSDBMO04), June 2002.

Ehrig, M. , Haase, P. , Staab, S. , and Tempich, C. Swap: A semantics-based peer-to-peer
system. In JXTA Workshop, November 2003.

Ferguson, D.; Nikolaou, C.; Sairamesh, J.; and Yemini, Y. 1996. Economic models for
allocating resources in computer systems. In S. Clearwater (Ed.), Market-Based Control:
A Paradigm for Distributed Resource Allocation. Hong Kong: World Scientific.

Frank, M.; Bugacov, A.; Chen, J.; Dakin, G.; Szekely, P.; and Neches, R. "The Marbles
Manifesto: A Definition and Comparison of Cooperative Negotiation Schemes for
Distributed Resource Allocation," Proceedings of the 2001 AAAI Fall Symposium on
Negotiation Methods for Autonomous Cooperative Systems, November 2-4, 2001, North
Falmouth, Massachusetts.

Frank, M. About New Global-Scale Collaborative Applications enabled by Structured
P2P Networks for RDF. (peer-reviewed workshop position paper) World Wide Web
Conference Workshop on Semantics in Peer-to-Peer and Grid Computing, 2 pages, 2004.

Garey, M., and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco, CA: W.H. Freeman and Company. Gent, 1., and Walsh,
T. 1993. Towards an Understanding of Hill-Climbing Procedures for SAT. In
Proceedings of AAAI-93, pp. 28-33.

Ghandeharizadeh, S. , Daskos, A. , and An, X. PePeR: A distributed range addressing
space for P2P systems. In Int'l Workshop on Databases, Information Systems, and Peer-
to-Peer Computing (at VLDB), 2003.

O. M. Group, 2002. CORBA Notification Service 1.0.1.

Ghandeharizadeh, S., Papadopoulos, C., Cai, M., and Krishna K. Chintalapudi, K..
Performance of Networked XML-Driven Cooperative Applications. Proceedings of the
2nd International Workshop on Cooperative Internet Computing, 9 pages, (Hong Kong,
China, August 18-19) 2002.

Shahram Ghandeharizadeh, Craig A. Knoblock, Christos Papadopoulos, Cyrus Shahabi,
Esam Alwagait, Jose Luis Ambite, Min Cai, Ching-Chien Chen, Parikshit Pol, Rolfe
Schmidt, Saihong Song, Snehal Thakkar, Runfang Zhou. Proteus: A System for
Dynamically Composing and Intelligently Executing Web Services. First International
Conference on Web Services (ICWS), 5 pages, (Las Vegas, Nevada, June 23-26) 2003.

Halevy, A., Ives, Z., Tatarinov, 1. , and Mork, P. Piazza: Data management infrastructure
for semantic-web applications. In the 13th World Wide Web Conference (WWW2003),

56

May 2003.

Huebsch, R. , Hellerstein, J. M., Lanham, N. , Loo, B. T., Shenker, S. , and Stoica, 1.
Querying the internet with pier. In the 29th International Conference on Very Large Data
Bases (VLDB2003), September 2003.

IBM, Akamai, HP, and S. et al, 2004. Web Services Notification.

S. M. Inc., 1998. Java Distributed Event Specification.

Jackson. We used Dr. D. Jackson’s Java implementation of WSAT available at
http://sdg.Ics.mit.edu/walksat

Kaashoek, F. and Karger, D. R. Koorde: A simple degree-optimal hash table. In 2nd Int'l
Workshop on P2P Systems, Feb. 2003.

Karvounarakis, G. , Alexaki, S. , Christophides, V., Plexousakis, D. , and Scholl, M.
RQL: A declarative query language for RDF. In 11th World Wide Web Conference, 2002.

M. Keidl, A. Kreutz, and A. Kemper. A publish and subscribe architecture for distributed
metadata management. In 18th International Conference on Data Engineering
(ICDE'02), February 2002.

Kirkpatrick, S.; Gelatt, C.; and Vecchi, M. 1983. Optimization by Simulated Annealing.
Science, 220, 671-680.

McBride, B. Jena: Implementing the RDF Model and Syntax specification. In 2nd Int'l
Semantic Web Workshop, 2001.

Milgrom, P. 2000. Putting auction theory to work: The simultaneous ascending auction.
Journal of Political Economy.

L. Miller. Inkling: RDF query using SquishQL. http://swordfish.rdfweb.org/rdfquery.

L. Miller, A. Seaborne, and A. Reggiori. Three implementations of SquishQL, a simple
RDF query language. In First Int'l Semantic Web Conference, 2002.

National Institute of Standards and Technology. Publication 180-1: Secure hash
standard, 1995.

W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A. Naeve, M. Nilsson, M. Palmer, and
T. Risch. EDUTELLA: A P2P networking infrastructure based on RDF. In 11th World
Wide Web Conference, 2002.

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, 1. Brunkhorst, and
A. Lser. Super-peer-based routing and clustering strategies for RDF-based peer-to-peer

57

networks. In 12th World Wide Web Conference, May 2003.

| A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in
structured P2P systems. In 2nd Int'l Workshop on P2P Systems, 2003.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In ACM SIGCOMM, 2001.

S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms for DHTs: Some open
questions. In 2nd Int'l Workshop on P2P Systems, Feb. 2003.

P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In
ACM/IFIP/USENIX International Middleware Conference(Middleware 2003), 2003.

M. Ripeanu, 1. Foster, and A. lamnitchi. Mapping the Gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet
Computing Journal, 6(1), 2002.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. Lecture Notes in Computer Science, 2218, 2001.

R.V.Guha. rdfDB : An RDF database. http://guha.com/rdfdb.

Sandholm, T., and Lesser, V. 1997. Issues in Automated Negotiation and Electronic
Commerce: Extending the Contract Net Framework. Readings in Agents, pp. 66-73,
Morgan Kaufmann.

S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file
sharing systems. In Multimedia Computing and Networking, Jan. 2002.

C. Schmidt and M. Parashar. Flexible information discovery in decentralized distributed
systems. In 12th IEEFE International Symposium on High Performance Distributed
Computing (HPDC'03), 2003.

Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strategies for satisfiability
testing. AAAI-92, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 26:521-532.

S. Sen and J. Wong. Analyzing peer-to-peer traffic across large networks. In ACM
SIGCOMM Workshop on Internet Measurement, Nov. 2002.

G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Manohar, S. Pail,
and L. Pearlman. A metadata catalog service for data intensive applications. In SC2003
Conference, November 2003.

Smith, R. 1980. The Contract Net Protocol: High-Level Communication and Control in a

58

Distributed Problem Solver. IEEE Transactions on Computers 29(12):1104-1113.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In ACM SIGCOMM, 2001.

H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and J. Broekstra. Index structures and
algorithms for querying distributed rdf repositories. In the 14th World Wide Web
Conference (WWW2004), May 2004.

D. Tam, R. Azimi, and H. A. Jacobsen. Building content-based publish/subscribe systems
with distributed hash tables. In International Workshop On Databases, Information
Systems and Peer-to-Peer Computing, September 2003.

C. Tempich, S. Staab, and A. Wranik. Remindin’: Semantic query routing in peer-to-peer
networks based on social metaphors. In the 14th World Wide Web Conference
(WWW2004), May 2004.

Waldspurger, C., and Weihl, W. 1994. Lottery scheduling: Flexible proportional-share
resource management. In Proceedings of the First Symposium on Operating Systems
Design and Implementation, pp. 1-11.

Walsh, W.; Wellman, M.; Wurman, P.; and MacKie-Mason, J. 1998. Auction protocols
for decentralized scheduling. In Eighteenth International Conference on Distributed
Computing Systems, Amsterdam, The Netherlands.

Walsh, W.; Wellman, M. 1998. Market SAT: An extremely decentralized (but really
slow) algorithm for prepositional satisfiability. In Seventh National Conference in
Artificial Intelligence, 303-309, 2000.

Wellman, M. 1996. The economic approach to artificial intelligence. ACM Computing

Surveys 28 (4es):14-15.B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical Report CSD-
01-1141, UC Berkeley, 2001.

C.T. C,Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In ACM SIGCOMM?2003, 2003.

59

-

Accounting Checklist

SEPTEMB ER 2004
LCS Input Deadline........c.cceoeuvuveieienrnnerecnnenennnes cerestacans Thursday, September 12th
LCS Run....cccvvivvnininracncacnness ceressescesnssrsntssnssasasanesTuesday, September 17th
Internal JV Deadline..........ccevuen. ceeerssssencesanscnsonsonsnas ...Monday, September 20th
SJJVs.caeuennas reecsesnsesssencersssnssssassasnsnrnns creersssssnssnsnanes Thursday, September 23rd
RJJVs.iieirieinnnnnns eeersesessssesesontssntnsorsnssrsnsnses veeeeeenso. Friday, September 24th
FACILITIES BILLING
Mark [0 | Review Facilities spreadsheet to ensure correct allocation of FAC income/charges
Mark] | Input all Facilities JVs
IPC BILLING
Mark] | Update entities table for NH #'s
Facilities [] | Update entities/visitors table for any new visitors
Human Resources [0 | Update entities table for new hires
Action [0 | Provide new and deleted login Ids during month as received. Send notification to Mark.
Action [J | Provide new home access Ids during month as received and also as deleted. Send
Mark notification of any changes.
Mark [| Prepare IPC retro Vs
Mark [] | Distribute IPC alpha charges report to Contracts/Accounting
Mark [1 | Prepare IPC JV report and send final reports via e-mail to the division directors.
Mark O | Input all IPC JVs
VACATION BILLING
Mark [] | Prepare and input vacation accrual JVs

C:My Documents/checklists/Monthly Acctg Chklst 1

Mark [J | Prepare vacation used calculation
Mark [1 | Prepare vacation used, retro and payout JVs
COMMON BILLING

Eloisa/Mark [| Update common worksheet spreadsheet:

1. Add new accounts,

2. Delete expired accounts,

3. Input salary data.
Eloisa/Mark [] | Prepare and input monthly common billing JV

MISC BILLINGS

Monica [J | Prepare and input Ralph's market, Remedy, FedEX JVs
Mark [] | Prepare and input MOSIS Fab runs, Los Nettos, VR Facility, and other cost transfer JVs
Raquel Rios [| Create monthly JV binder
Casandra] | Review and verify all JVs for accuracy

DIVISION ANALYSIS (FORECASTING)
Casandra, Lisa and [J | Prepare and review monthly division analyses and ad-hoc reports. (Casandra 2 & 3,--Raquel 4
Raquel & 7,--Lisa 1, 8,9 & 10).

REPORTING
Casandra/Raquel (] | Prepare IPC Income and Expense Reports [] East [West
(Send e-mail for IPC West (see special format) and IPC East)

Casandra/Raquel (] | Prepare ISI Facilities Income and Expense Reports [] East [west

(Send e-mail for FAC East)

C:My Documents/checklists/Monthly Acctg Chklst 2

L

REPORTING (cont.)
Casandra [] | Reconcile Equipment Depreciation Account (22-1540-2626/22-1540-4835)
Casandra/Raquel [l | Prepare Common Income and Expenses Report [] East [] West
(Send e-mail for Common East)
Casandra/Raquel [J | Prepare and send e-mails for DIV ADMIN Income
and Expenses Report 0 pivi [Div2
[J piv3 [] Div4
[] piv7 [] Divs8
Casandra/Raquel [| Prepare Virtual Reality (send e-mail) ISI East Hardware Clearing Analysis
Submit FIMS data: ACT Templates: The FIMS reports should be completed and e-mailed by
the 5" of each month to C.Porter, Project Leader, Div. Admin. and Beverly. ACT-TEMP 53-
Casandra 4540-0505/53-4540-0506/53-4533-0506/53-4540-0510, TEMPLE 53-4540-4224 TASK: TASK
[0 | 99 (53-4540-1157 , 53-4509-1158 &53-4540-1159) and WEBSCRIPTER (53-4540-7734 and
53-4540-7735), DASADA: SIMS-TABASSCO (53-4540-0611, 53-4540-0612); EELD:
KOJAK (53-4540-0584/53-4540-0585/53-4540-0586/53-4509-0586/53-4540-0587 and 53-
4540-0588) (*Note at bottom of e-mail break out Rap Teams and KOJAK/MOJAK);
WIDELINK (53-4540-0193/53-4540-0194/53-4540-0195/53-4540-0196)
Casandra [| Prepare Monthly JIST Analysis (53-4540-2301-Send to Beverly)
Casandra Prepare NASA IPG NPACI Quarterly Report (53-4540-4241, 53-4540-4240 and 53-4540-
O | 4242)
Prepare NPACI Quarterly Report (53-4540-1017/53-4540-1018)
Casandra [0 | Prepare Unrestricted Report (monthly)
[] | Prepare UNR Allocation Report (quarterly)
Casandra [0 | Prepare monthly financial package for financial meeting (powerpoint slides, obligated report,
account summary, cost sharing, labor spread and award summary)
Raquel [] | Prepare MOSIS Clearing analysis (for Cesar)
Raquel] | Prepare MOSIS EMS02 and EMS02 T&M Task Analysis (for Gwen)
Lisa [] | Prepare Kesselman Analysis
PROCUREMENT CARDS
Raquel [| On-line updating of clearing account charges

C:My Documents/checklists/Monthly Acctg Chklst 3

PROCUREMENT CARDS (cont.)

Raquel [] | Prepare manual JVs of clearing account charges

Raquel Rios [0 | Distribute statements to cardholders

Raquel Rios [0 | Reconcile statements with receipts and supporting documentation

Raguel Rios [| Maintain spreadsheets of cardholders and outstanding statements

MISCELLANEOUS

Raquel [J | ISI East Petty Cash Reimbursements

Raquel [| Invoice Third Parties--FAST Exchange, Fetch, ICANN for suite rental and IPC costs

Casandra [] | Reconcile NOREC account (12-1540-0010)

Casandra [| Review program recharge centers and master accounts for correctness

Raquel [0 | Reconcile procard clearing account (12-1540-5405)

Raquel [0 | Reconcile and Review travel clearing account (12-1540-0018)

Raquel Rios/Raquel [C] | Deposit reimbursement (shipping, telephone, postage, paper, copying, etc.). MOSIS and Los
Nettos checks

Lisa O | Review Tuition Billing Report

C:My Documents/checklists/Monthly Acctg Chklst 4

